
Irmin(sule)

Amir Chaudhry, Jon Crowcroft, Thomas Gazagnaire
Anil Madhavapeddy, Richard Mortier1

David Scott2, David Sheets and Gregory Tsipenyuk,

University of Cambridge, University of Nottingham1, Citrix Systems2

SRG Seminar
Computer Lab, Cambridge

22/05/2014

Summary

1. Overview

I Context
I Branch Consistency
I Library Database

2. Use-Cases

3. Architecture

Context: The Stack Contest

LAMP

I Linux
I Apache (or Nginx)
I MySQL (or PostgreSQL)
I PHP (or Ruby-on-Rails)

MISO

I Mirage
I Irmin
I Signpost
I OCaml

Context: Mirage

Unikernel compiler

Hardware

Hypervisor

OS Kernel

User Processes

Language Runtime

Parallel Threads

Application Binary

Language Runtime

Hardware

Hypervisor

Application Code

Configuration Files
application source code
configuration files
hardware architecture
whole-system optimisation

specialised
unikernel}

Irmin
Distributed

Same design principle as Distributed Version Control Systems

I More Git (state based) than Darcs (operational based)

Immutable

Like Git, the underlying store should never forgets

I Build mutability as an abstraction

Large Scale

Unlike Git, creation of partial replicas is easy and fast

I Replicas should be both clients and servers (p2p)
I Replicas should work on partial fetches

Irmin
Distributed

Same design principle as Distributed Version Control Systems

I More Git (state based) than Darcs (operational based)

Immutable

Like Git, the underlying store should never forgets

I Build mutability as an abstraction

Large Scale

Unlike Git, creation of partial replicas is easy and fast

I Replicas should be both clients and servers (p2p)
I Replicas should work on partial fetches

Irmin
Distributed

Same design principle as Distributed Version Control Systems

I More Git (state based) than Darcs (operational based)

Immutable

Like Git, the underlying store should never forgets

I Build mutability as an abstraction

Large Scale

Unlike Git, creation of partial replicas is easy and fast

I Replicas should be both clients and servers (p2p)
I Replicas should work on partial fetches

Branch Consistency

I History metadata are also stored in the database

I Every operation is relative to an history state
read(h, key) value

I Every update operation produces a new history state
update(h, key, value) h’

I All the replica are always consistent (by design)

I Their union forms a global database

Branch Consistency

I History metadata are also stored in the database

I Every operation is relative to an history state
read(h, key) value

I Every update operation produces a new history state
update(h, key, value) h’

I All the replica are always consistent (by design)

I Their union forms a global database

Branch Consistency

I History metadata are also stored in the database

I Every operation is relative to an history state
read(h, key) value

I Every update operation produces a new history state
update(h, key, value) h’

I All the replica are always consistent (by design)

I Their union forms a global database

Branch Consistency

I History metadata are also stored in the database

I Every operation is relative to an history state
read(h, key) value

I Every update operation produces a new history state
update(h, key, value) h’

I All the replica are always consistent (by design)

I Their union forms a global database

Branch Consistency

I History metadata are also stored in the database

I Every operation is relative to an history state
read(h, key) value

I Every update operation produces a new history state
update(h, key, value) h’

I All the replica are always consistent (by design)

I Their union forms a global database

Branch Consistency

FOO

b

h1

a

Process 1

I update(⊥, a/b,“FOO”) h1

Branch Consistency

FOO

b

h1

a

h2

a b

BAR

Process 1

I update(⊥, a/b,“FOO”) h1

I update(h1, b ,“BAR”) h2

Branch Consistency

FOO

b

h1

a

h2

BAZ

a
b

Process 2

I update(⊥, a/b,“FOO”) h1

I update(h1, b ,“BAZ”) h3

Branch Consistency

FOO

b

h1

a

h2

a
b

BAR

h3

BAZ

a
b

Global Graph

Branch Consistency

FOO

b

h1

a

h2

a
b

BAR

h3

BAZ

a
b

h4

BARZ

b

a

Explicit Reconciliation

I update(h2 + h3, b,“BARZ”) h4

Branch Consistency

I Every replica is a branch pointer in the global database

I All operations are relative to a branch pointer

I They might modify the pointer

I Branch pointers are the only mutable part of the system

I They do not need to be global
I The current branch is implicit

Branch Consistency

I Every replica is a branch pointer in the global database

I All operations are relative to a branch pointer

I They might modify the pointer

I Branch pointers are the only mutable part of the system

I They do not need to be global
I The current branch is implicit

Branch Consistency

I Every replica is a branch pointer in the global database

I All operations are relative to a branch pointer

I They might modify the pointer

I Branch pointers are the only mutable part of the system

I They do not need to be global
I The current branch is implicit

Library Database

Complex Storage Policies

“All replicas should eventually be in sync”.

“My phone should sync to my personal cloud only when
wifi is available”.

“Data stored in the cloud should be encrypted”.

Library Database

Heterogeneous Devices

I cloud
I smart-phones / tablets
I IoT (Internet of Things)
I . . .

Heterogeneous Scheduling

I Encryption
I Data locality
I Paths of data migration
I . . .

Library Database

No Unique Solution

Library Database

I Base policies and combinators available as libraries
I An application is a composition of policies
I Heterogeneous backends

I Git
I in-memory
I HTTP
I Distributed Hash-table (DHT)
I convergent encryption store (ExoStore)
I . . .

Library Database

No Unique Solution

Library Database

I Base policies and combinators available as libraries
I An application is a composition of policies
I Heterogeneous backends

I Git
I in-memory
I HTTP
I Distributed Hash-table (DHT)
I convergent encryption store (ExoStore)
I . . .

Library Database

module Git = IrminGit.Make

(IrminKey.SHA1)

(IrminContents.String)

(IrminReference.String)

module Store = (val Git.create ~bare:true

~kind:‘Disk

~root:path ())

Library Database

let main () =

Store.create () >>= fun t1 ->

Store.update t1 ["a";"b"] "FOO" >>= fun () ->

Store.branch t1 "process2" >>= fun t2 ->

Store.update t1 ["b"] "BAR" >>= fun () ->

Store.update t2 ["b"] "BAZ" >>= fun () ->

Store.merge t2 ~into:t1 >>= function

| ‘Ok () -> return_unit

| ‘Conflict _ ->

Store.update t2 ["b"] "BARZ" >>= fun () ->

Store.update t1 ["b"] "BARZ" >>= fun () ->

Store.merge_exn t2 ~into:t1

The (only?) slide to remember

Irmin “secret ingredients”

1. Branch Consistency

2. Library Database

The (only?) slide to remember

Irmin “secret ingredients”

1. Branch Consistency

2. Library Database

Summary

1. Overview

2. Use-Cases

I Xenstore
I IMAPlet
I eFS

3. Architecture

Use-Cases

Irmin co-development

I Active cycle between use-cases and Irmin dev

I Find the right abstractions

I Be easy enough to use and to integrate

I Provide the right performance

I Should work on real systems

New use-cases are welcome!

Xenstore [David Scott]

Hardware

Xen
XenBus

Xenstore

Kernel Kernel

Dom0 DomU

Legacy Xenstore

I Efficient, single-host, in-memory database
I Fast inter-process communication channels (∼ 30 per VM)
I Critical to the proper functioning of hosts running Xen

Xenstore [David Scott]

Hardware

Xen
XenBus

Xenstore

Kernel Kernel

Dom0 DomUDomU

Mirage
IRMIN

Using Irmin

I Fault-tolerance
I Full diagnostic event tracing system
I RPC tree for general inter-process communication

IMAPlet [Gregory Tsipenyuk]

IMAP server SMTP server
mailbox

Legacy IMAP

I Custom protocol to synchronize mailboxes
I Separate protocol to receive and send emails (SMTP)

IMAPlet [Gregory Tsipenyuk]

IMAP
server

SMTP
serverIrmin

Irmin Irmin

Using Irmin

I Can run in the browser
I Use Irmin to synchronize mailboxes and send emails
I History and revert come for free

eFS [David Sheets]

FO

b

a
b

O

BA R

Legacy Filesystem

I Prefix-trees with bounded nodes (inodes and memory pages)
I Concurrent semantics not very well defined
I Most implementations use locks

eFS [David Sheets]

FO

b

a
b

O

BA R

P1

b

BA Z

P2

Using Irmin

I Every pair PID/fd has a branch
I Explicit syncing points
I Structured files with custom merge policies

Summary

1. Overview

2. Use-Cases

3. Architecture

I Mergeable Contents
I Block Store
I Tag Store
I Irmin Store

Mergeable Contents

Application-specific data-structures

User-provided merge function

I 3-way merge

i

x y

?

Mergeable Contents
Distributed Counters

I type: integers

I merge function:
f (i , x , y) = i + (x − i) + (y − i)

Distributed Sets

I type: polymorphic sets

I merge function:
f (I ,X ,Y) = I ∪ (X \ I) ∪ (Y \ I) \ (I \ X) \ (I \ Y))

More Complex Datastructures [Benjamin Farinier]

I Distributed queues / stacks
I Ropes, Blame-trees, (ie. fast strings merging)

Mergeable Contents
Distributed Counters

I type: integers

I merge function:
f (i , x , y) = i + (x − i) + (y − i)

Distributed Sets

I type: polymorphic sets

I merge function:
f (I ,X ,Y) = I ∪ (X \ I) ∪ (Y \ I) \ (I \ X) \ (I \ Y))

More Complex Datastructures [Benjamin Farinier]

I Distributed queues / stacks
I Ropes, Blame-trees, (ie. fast strings merging)

Mergeable Contents
Distributed Counters

I type: integers

I merge function:
f (i , x , y) = i + (x − i) + (y − i)

Distributed Sets

I type: polymorphic sets

I merge function:
f (I ,X ,Y) = I ∪ (X \ I) ∪ (Y \ I) \ (I \ X) \ (I \ Y))

More Complex Datastructures [Benjamin Farinier]

I Distributed queues / stacks
I Ropes, Blame-trees, (ie. fast strings merging)

Block Store

FOO

b

h1

a

h2

a
b

BAR

h3

BAZ

a
b

h4

BARZ

b

a

Block Store

Tag Store
HEADP2

Irmin Store

Block Store

I Append-only key / value store
I Potentially very large (unbounded growth)
I Values are sequence of bytes

I Raw blobs
I Serialized structured values
I Serialized history metadata

I Keys are computed deterministically from the values (SHAxx)
I Very simple interface: easy to create new backends

I Git
I In-memory
I Raw block devices
I HTTP
I Encrypted

Block Store

Replication

I Fast hash set reconciliation for keys synchronization

I data is immutable: no conflict!
I Bloom Filters [Magnus Skjegstad]

I Lazy exchange of values

I Merge create new values

I conflict resolution local to the replica
I use custom merge functions
I need to avoid stacking merge commits (associativity helps)

I Support for partial replicas

I Context resolution of names [David Sheets]
I Use direct mapping to backends (Git submodules)

Tag Store

FOO

b

h1

a

h2

a
b

BAR

h3

BAZ

a
b

h4

BARZ

b

a

Block Store

Tag Store
HEADP2

Irmin Store

Tag store

I Mutable key / value store
I Small: usually one key (Git’s HEAD)
I Keys are branch names
I Values are pointers to history state
I Should support event notification
I Very simple interface: easy to create new backends

I Git
I In-memory
I DNS

I Do not need to be replicated!

Irmin Store

FOO

b

h1

a

h2

a
b

BAR

h3

BAZ

a
b

h4

BARZ

b

a

Block Store

Tag Store
HEADP2

Irmin Store

Irmin Store

Generated Mutable Store

I Mutable and structured store
I Automatically generated from:

I Mergeable contents
I Implementations for the block and tag stores

I Potentially very large
I Keys are tree paths
I Values are user-defined (need a merge function)

Irmin Store

Content-Addressable Store

I Keep a complete history of updates

I Keep track of provenance
I Snapshot / revert come for free

I Support for encryption
I Validation of synchronization consistency (Merkle Tree)

Future Work

Managing Unbounded Growth

Buy more disks

I commodity storage steadily becomes more and more
inexpensive

Compression

I Store the most recent object uncompressed
I Store older objects as reverse diffs (reverse VHD)

Managing Unbounded Growth
Garbage Collection

I The block store is a distributed heap
I Tags points to the GC roots
I Usual (distributed) GC algorithms
I Need to keep track of global tag usage

Sparse History (Rebase)

I Each replica maintain two branches

I A complete but bounded history: “the last 100 commit”
I A sparse history: “A commit every hour”

I Regular squash-rebasing from the bounded to the sparse
history

I Only synchronize the sparse histories
I Each replica runs its local GC

Managing Unbounded Growth
Garbage Collection

I The block store is a distributed heap
I Tags points to the GC roots
I Usual (distributed) GC algorithms
I Need to keep track of global tag usage

Sparse History (Rebase)

I Each replica maintain two branches

I A complete but bounded history: “the last 100 commit”
I A sparse history: “A commit every hour”

I Regular squash-rebasing from the bounded to the sparse
history

I Only synchronize the sparse histories
I Each replica runs its local GC

And More!

More backends, more mergeable contents

Benchmarks

Interfacing with non-OCaml code

I External API

I Higher-level REST API (JSON over HTTP)
I Binary protocols (using Google’s Protocol buffer ?)

I Library

I Ctypes description to generate automatic bindings to other
languages

Questions ?

Try it!

Resources

https://github.com/mirage/irmin

https://github.com/mirage/irmin/wiki/Getting-Started

Use-Cases

I Xenstore: https://github.com/djs55/ocaml-xenstore

I IMAPlet: https://github.com/ocamllabs/imaplet

I eFS: https://github.com/dsheets/efs

https://github.com/djs55/ocaml-xenstore
https://github.com/ocamllabs/imaplet
https://github.com/dsheets/efs

	Future Work
	Questions ?

