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About me

• Core team of MirageOS 

• Co-founder of “Unikernel 
Systems” 

• Now work at Docker
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Legacy Applications
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Legacy Applications
Traditional software stack

• your nice application
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Legacy Applications
Traditional software stack

• “Legacy OS” layers: 
• multiple processes 
• multiple purposes 
• multiple users 
• multiple hardware platforms
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• your nice application



Legacy Applications
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Legacy Applications
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Legacy Applications
(unsafe) code bloat: 
- Linux kernel: 25 millions of loc 
- Windows kernel: 50 millions of loc 
- Debian 5.0: 65 millions of loc 
- OSX 10.4: 85 millions of loc

Debian in 2013 OpenSSL 

- 500k of C 
- used by 2/3 of web servers 
- 23 CVE in 2014 
- 31 CVE in 2015 
- 34 CVE in 1016
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Legacy Applications
Your nice application

Legacy craft 
needed 

to deploy it
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LinuxKit
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https://github.com/linuxkit/linuxkit

https://github.com/linuxkit/linuxkit


Immutable Delivery 

“In the cloud, we know exactly what we want a 
server to be, and if we want to change that we 
simply terminate it and launch a new server with a 
new AMI.” 

Netflix Building with Legos, 2011
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Immutable Delivery 

“As a system administrator, one of the scariest things 
I ever encounter is a server that’s been running for 
ages. 

If you absolutely know a system has been created via 
automation and never changed since the moment of 
creation, most of the problems disappear.” 

Chad Fowler,Trash Your Servers and Burn Your Code, 2013
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Built for Docker Editions 

immutable delivery was what we needed for 
reliability 

• could not find an existing solution 

• iterated since 2015 

• found a design that is useful for others 

• time to open source and get community input

first desktop then cloud 

13



Requirements 

• batteries included, but removable 

• fast to build, fast to boot 

• build whole system in your CI pipeline 

• best-of-breed security technologies by default 

• immutable in production 

• designed to be managed by external tooling 

• container native, cloud native
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Design Philosophy 

existing distributions tend to do things at boot-time 
which increases the image size and complexity. 

• the “unikernel” approach is to highly specialise a 
deployment based on the application being 
deployed. 

• so we applied this approach to building Linux. 

• what if everything in the booting image was specified 
in one file and built as easily as “docker build”?

specialise at build time, not run time 
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Secure Defaults 

The project provides the base containers to get 
started, with an emphasis on minimalism and 
security 

• you only need a few containers 

• enough to bootstrap distributed applications 

• security project incubation

which can be replaced 
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Community of Contributors 

48 Contributors/22 External, 3500 commits 
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yaml file defines boot image 

The config file defines the whole system 

• kernel 

• boot scripts 

• config containers 

• service containers 

Also defines what to output: ISOs, AMIs etc

18



yaml config file 

kernel:
  image: "linuxkit/kernel:4.9.x"
  cmdline: "console=ttyS0 console=tty0 page_poison=1"
init:
  - linuxkit/init
  - linuxkit/runc
  - linuxkit/containerd
onboot:
...
services:
...
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yaml config file 

services:

  - name: nginx

    image: "nginx:alpine"

    capabilities:

     - CAP_NET_BIND_SERVICE

     - CAP_CHOWN

     - CAP_SETUID

     - CAP_SETGID

     - CAP_DAC_OVERRIDE

    net: host
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Demo
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LinuxKit on macOS



Demo
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LinuxKit on GCP



Demo
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LinuxKit on packet.net

http://packet.net


Unikernels
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https://github.com/mirage/mirage

(mainly MirageOS)

https://github.com/mirage/mirage


Unikernels
Traditional software stack

sshd in 
container

minimal init image

app in 
container

LinuxKit

dhcpcd in 
container
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Unikernels
Traditional software stack Unikernels
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Unikernels

sssh in 
container

minimal init image

app in 
container

LinuxKit
dhcpcd in 
container
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At build time: 

• everything (including system services) are 
packaged into (minimal) container images, 
based on Alpine.

• Use an external tool (moby) to pull in only 
the necessary containers. 

• Fix the deployment target: VM, bare-metal 

At runtime: 

• Strong isolation between processes  
• Read-only filesystem for containers. 
• RPC  
• No package manager in the init image: by 

default it just contains containerd and runc.



Unikernels

Unikernels

At build time: 

• Everything (including the kernel bits, e.g. the 
TCP/IP stack) is a library. 

• Use a package manager and a compiler to 
link only what is needed. 

• Fix the deployment target: Unix process, 
hypervisor (Xen, KVM, Solo5), bare metal. 

At runtime: 

• single self-contained static image which 
runs 
• in a single process 
• in a single address space 
• including the kernel
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Unikernels
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Unikernels
Benefits 

• static linking + dead-code elimination: 

•  removes all unnecessary code: DNS server is ~100kiB 

• smaller attack surface 

• Use a few MiB of RAM: https://mirage.io uses 32 MiB 
(including the TLS stack)
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https://mirage.io


Demo
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MirageOS on macOS



Demo
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MirageOS on Xen



Docker for Mac

(“not quite so broken TLS”

User-space Unikernels 

docker 
client

container dhcpc 
container

docker 
daemon

OSX kernel

vpnkit osxfs 
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MirageSDK

(“not quite so broken TLS”

Type-safe System Daemons

(“not quite so broken TLS”

minimal type-safe initd (Rust)

containerd / runc

Linux Kernel

dhcpcd docker

app1 app2 …

hypervisor

dhcpcd dhcpcd
hypervisor

ntpd dhcpcd
hypervisor

rngd dhcpcd
hypervisor

httpsd
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• DHCP is the first daemon that we are prototyping. 

• This is a difficult daemon to privilege separate due 
to the deep (and non portable) system hooks 
required to handle IP and routing tables (e.g. 
netlink). 

• Implementation fleshes out a lot of architectural 
questions and makes subsequent protocol 
implementations such as NTP and HTTPS more 
straightforward.

MirageSDK
Type-safe System Daemons



MirageSDK
Type-safe System Daemons
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dhcpcd/engine

dhcpcd/network

dhcpcd/actuator

dhcpcd/config

eth0

resolv.conf

User-space privileged separation: 

• every component is a container, with 
only one process 

• components communicate via 
“secure” channels using RPC (cap’n 
proto) 

• use of seccomp / eBPF to create a 
sandbox at the syscall granularity



MirageSDK
Type-safe System Daemons
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dhcpcd/engine

dhcpcd/network

dhcpcd/actuator

dhcpcd/config

eth0

resolv.conf

• network: can read network interface 
and forward DHCP traffic. 

• engine: can see nothing except 
channels to network and config 
containers 

• config: store DHCP configuration 

• actuator: can manipulate routing 
tables but cannot see networkrouting tables



• Need protection at all levels of the stack for defence in depth: 

• application level: static type safety when parsing network traffic (via OCaml, 
Rust logic) and secure RPC (via capnp) 

• protocol state machine: fuzz testing for rapid space exploration (via American 
Fuzzy Loop aka AFL) 

• runtime process: container namespacing and KVM hardware protection if 
available (via unikernel Solo5) 

• kernel interface: eBPF sandboxing for fine-grained access to sys calls 

• implementation diversity: the container/rpc approach lets many runtime/
language work together without tight coupling 

• What else? LinuxKit lets us patch kernel and use facility directly into the base 
daemons, just like BSD distros. SGX, TrustZone, etc

MirageSDK
Going Deeper for Security



Wrapping Up
• Docker for Desktop uses unikernel technology under the hood, 

ships to millions of users: 

Docker Distributed System Summit: https://www.youtube.com/watch?v=dn4ARS4lDlQ 

• LinuxKit uses a “unikernel”-like approach to build secure and 
immutable Linux distributions. It also uses unikernel technologies 
for improving security of system daemons. 

LinuxKit Security SIG: https://github.com/linuxkit/linuxkit/blob/master/reports/sig-security/2017-06-07.md 

Tooling for using and deploying unikernels is improving as a side-
effect, and community is growing: includeOS (C++), deferPanic (Go)

39

https://www.youtube.com/watch?v=dn4ARS4lDlQ
https://github.com/linuxkit/linuxkit/blob/master/reports/sig-security/2017-06-07.md


Merci!

40


