
Unikernels @Docker

Thomas Gazagnaire
28 Juin 2017

1

About me

• Core team of MirageOS

• Co-founder of “Unikernel
Systems”

• Now work at Docker

2

Legacy Applications

3

Legacy Applications
Traditional software stack

• your nice application

4

Legacy Applications
Traditional software stack

• “Legacy OS” layers:
• multiple processes
• multiple purposes
• multiple users
• multiple hardware platforms

5

• your nice application

Legacy Applications

6

Legacy Applications

7

Legacy Applications
(unsafe) code bloat:
- Linux kernel: 25 millions of loc
- Windows kernel: 50 millions of loc
- Debian 5.0: 65 millions of loc
- OSX 10.4: 85 millions of loc

Debian in 2013 OpenSSL

- 500k of C
- used by 2/3 of web servers
- 23 CVE in 2014
- 31 CVE in 2015
- 34 CVE in 1016

8

Legacy Applications
Your nice application

Legacy craft
needed

to deploy it

9

LinuxKit

10

https://github.com/linuxkit/linuxkit

https://github.com/linuxkit/linuxkit

Immutable Delivery

“In the cloud, we know exactly what we want a
server to be, and if we want to change that we
simply terminate it and launch a new server with a
new AMI.”

Netflix Building with Legos, 2011

11

Immutable Delivery

“As a system administrator, one of the scariest things
I ever encounter is a server that’s been running for
ages.

If you absolutely know a system has been created via
automation and never changed since the moment of
creation, most of the problems disappear.”

Chad Fowler,Trash Your Servers and Burn Your Code, 2013

12

Built for Docker Editions

immutable delivery was what we needed for
reliability

• could not find an existing solution

• iterated since 2015

• found a design that is useful for others

• time to open source and get community input

first desktop then cloud

13

Requirements

• batteries included, but removable

• fast to build, fast to boot

• build whole system in your CI pipeline

• best-of-breed security technologies by default

• immutable in production

• designed to be managed by external tooling

• container native, cloud native

14

Design Philosophy

existing distributions tend to do things at boot-time
which increases the image size and complexity.

• the “unikernel” approach is to highly specialise a
deployment based on the application being
deployed.

• so we applied this approach to building Linux.

• what if everything in the booting image was specified
in one file and built as easily as “docker build”?

specialise at build time, not run time

15

Secure Defaults

The project provides the base containers to get
started, with an emphasis on minimalism and
security

• you only need a few containers

• enough to bootstrap distributed applications

• security project incubation

which can be replaced

16

Community of Contributors

48 Contributors/22 External, 3500 commits

17

yaml file defines boot image

The config file defines the whole system

• kernel

• boot scripts

• config containers

• service containers 

Also defines what to output: ISOs, AMIs etc

18

yaml config file

kernel:
 image: "linuxkit/kernel:4.9.x"
 cmdline: "console=ttyS0 console=tty0 page_poison=1"
init:
 - linuxkit/init
 - linuxkit/runc
 - linuxkit/containerd
onboot:
...
services:
...

19

yaml config file

services:

 - name: nginx

 image: "nginx:alpine"

 capabilities:

 - CAP_NET_BIND_SERVICE

 - CAP_CHOWN

 - CAP_SETUID

 - CAP_SETGID

 - CAP_DAC_OVERRIDE

 net: host

20

Demo

21

LinuxKit on macOS

Demo

22

LinuxKit on GCP

Demo

23

LinuxKit on packet.net

http://packet.net

Unikernels

24

https://github.com/mirage/mirage

(mainly MirageOS)

https://github.com/mirage/mirage

Unikernels
Traditional software stack

sshd in
container

minimal init image

app in
container

LinuxKit

dhcpcd in
container

25

Unikernels
Traditional software stack Unikernels

26

Unikernels

sssh in
container

minimal init image

app in
container

LinuxKit
dhcpcd in
container

27

At build time:

• everything (including system services) are
packaged into (minimal) container images,
based on Alpine.

• Use an external tool (moby) to pull in only
the necessary containers.

• Fix the deployment target: VM, bare-metal

At runtime:

• Strong isolation between processes
• Read-only filesystem for containers.
• RPC
• No package manager in the init image: by

default it just contains containerd and runc.

Unikernels

Unikernels

At build time:

• Everything (including the kernel bits, e.g. the
TCP/IP stack) is a library.

• Use a package manager and a compiler to
link only what is needed.

• Fix the deployment target: Unix process,
hypervisor (Xen, KVM, Solo5), bare metal.

At runtime:

• single self-contained static image which
runs
• in a single process
• in a single address space
• including the kernel

28

Unikernels

29

Unikernels
Benefits

• static linking + dead-code elimination:

• removes all unnecessary code: DNS server is ~100kiB

• smaller attack surface

• Use a few MiB of RAM: https://mirage.io uses 32 MiB
(including the TLS stack)

30

https://mirage.io

Demo

31

MirageOS on macOS

Demo

32

MirageOS on Xen

Docker for Mac

(“not quite so broken TLS”

User-space Unikernels

docker
client

container dhcpc
container

docker
daemon

OSX kernel

vpnkit osxfs

33

MirageSDK

(“not quite so broken TLS”

Type-safe System Daemons

(“not quite so broken TLS”

minimal type-safe initd (Rust)

containerd / runc

Linux Kernel

dhcpcd docker

app1 app2 …

hypervisor

dhcpcd dhcpcd
hypervisor

ntpd dhcpcd
hypervisor

rngd dhcpcd
hypervisor

httpsd

34

• DHCP is the first daemon that we are prototyping.

• This is a difficult daemon to privilege separate due
to the deep (and non portable) system hooks
required to handle IP and routing tables (e.g.
netlink).

• Implementation fleshes out a lot of architectural
questions and makes subsequent protocol
implementations such as NTP and HTTPS more
straightforward.

MirageSDK
Type-safe System Daemons

MirageSDK
Type-safe System Daemons

36

dhcpcd/engine

dhcpcd/network

dhcpcd/actuator

dhcpcd/config

eth0

resolv.conf

User-space privileged separation:

• every component is a container, with
only one process

• components communicate via
“secure” channels using RPC (cap’n
proto)

• use of seccomp / eBPF to create a
sandbox at the syscall granularity

MirageSDK
Type-safe System Daemons

37

dhcpcd/engine

dhcpcd/network

dhcpcd/actuator

dhcpcd/config

eth0

resolv.conf

• network: can read network interface
and forward DHCP traffic.

• engine: can see nothing except
channels to network and config
containers

• config: store DHCP configuration

• actuator: can manipulate routing
tables but cannot see networkrouting tables

• Need protection at all levels of the stack for defence in depth:

• application level: static type safety when parsing network traffic (via OCaml,
Rust logic) and secure RPC (via capnp)

• protocol state machine: fuzz testing for rapid space exploration (via American
Fuzzy Loop aka AFL)

• runtime process: container namespacing and KVM hardware protection if
available (via unikernel Solo5)

• kernel interface: eBPF sandboxing for fine-grained access to sys calls

• implementation diversity: the container/rpc approach lets many runtime/
language work together without tight coupling

• What else? LinuxKit lets us patch kernel and use facility directly into the base
daemons, just like BSD distros. SGX, TrustZone, etc

MirageSDK
Going Deeper for Security

Wrapping Up
• Docker for Desktop uses unikernel technology under the hood,

ships to millions of users:

Docker Distributed System Summit: https://www.youtube.com/watch?v=dn4ARS4lDlQ

• LinuxKit uses a “unikernel”-like approach to build secure and
immutable Linux distributions. It also uses unikernel technologies
for improving security of system daemons.

LinuxKit Security SIG: https://github.com/linuxkit/linuxkit/blob/master/reports/sig-security/2017-06-07.md

Tooling for using and deploying unikernels is improving as a side-
effect, and community is growing: includeOS (C++), deferPanic (Go)

39

https://www.youtube.com/watch?v=dn4ARS4lDlQ
https://github.com/linuxkit/linuxkit/blob/master/reports/sig-security/2017-06-07.md

Merci!

40

