
MirageOS
Towards a smaller and safer OS

Thomas Gazagnaire
thomas@gazagnaire.org

OUPS

23 Mai 2018

�1

mailto:thomas@gazagnaire.org

Some Good News

Static analysis tools are becoming mainstream: FramaC, Astrée,
Coccinelle, Infer, …

‣ Target C/C++/Objective-C/Java applications

‣ Scaling from partial core logic to complete “real-world”
application (current sizes: 100k — 10m loc)

‣ Difficult balance between scaling and power of analysis (bound
checks v.s dynamic allocation, data races, …)

!2

Some bad news

‣ Application code is a small %
of the runtime environnement

‣ Runtime is historically split
into abstraction layers with
different communities

‣ In deployment environments,
developers do not control that
stack (vs. operators) Firmware

Hypervisor

Kernel

Language Runtime

Shared Libraries

Configuration files

Application

Complexity of today’s traditional system software
stack makes full system analysis impossible

 3

MirageOS

‣ layers become independent libraries

‣ The MirageOS compiler transforms
an application manifest into a
specialised image

‣ Rely on the OCaml compiler to
perform modular static analysis,
dead-code elimination, etc.

‣ Rely on the OCaml runtime as the
sole trusted runtime environment
(and selected C bindings)

Application Code

Configuration Files

Userspace and Kernel Libraries

MirageOS compiler

Sandbox

Application

OCaml Runtime

MirageOS is a library OS and a compiler which can
build specialised images containing only the runtime

environment which is needed by an application

 4

MirageOS

MirageOS images:

‣ are self-contained: full control on the runtime environment

‣ are small: <10 MiB (~100 KiB in some cases)

‣ are resource efficient: <16 MiB of RAM (~100 KiB in some cases)

‣ boot fast: a few ms

‣ flexible sandbox selection: unix binary, Xen/KVM images, etc.

!5

MirageOS

!6

Quick Recap

‣ 2007: Anil Madhavapeddy’s PhD:
Towards a "functional" Internet at
University of Cambridge

‣ 2008: Citrix/XenServer libraries
(Anil, Dave Scott, me)

‣ 2013: MirageOS 1.0 (opam
support, mirage types, CLI)

‣ 2014: MirageOS 2.0 (ARM support,
irmin, ocaml-tls)

‣ 2017: MirageOS 3.0 (solo5
support, result type, logs, …)

‣ 200+ contributors

‣ 100+ libraries

‣ Major industrial users and contributors:
IBM, Citrix, Docker, Ericsson, SAP, …

‣ Regular meetups and hackatons

‣ Millions of (indirect) users via Docker for
Desktop and and XenServer

NumbersHistory

 7

MirageOS
as a library OS

!8

Signatures
mirage_types.ml defines module
signatures for “standard” device drivers

Mirage_net_lwt.S
(network card)

!9

Signatures
mirage_types.ml defines module
signatures for “standard” device drivers

Mirage_kv_lwt.RO
(read-only disk)

!10

Implementations

‣ Module signatures are the backbone of MirageOS

‣ Every signature has multiple implementations

‣ Implementations have specialised constructors

‣ Implementations might define more concrete errors

!11

Implementations

Netif (Unix tap device) Netif (xen netfront/netback)

!12

Implementations
Implementations can be functors with device signature as
parameters. Follow same rules as normal implementation
regarding errors and constructors.

Ethif (ethernet layer)

!13

Available libraries

B-trees: code extracted from Isabelle/HOL

TLS: “rigorous engineering” e.g. same pure code to
generate test oracles, verify oracle against real-world TLS
traces and the real implementation

hundreds of libraries are available

!14

MirageOS
as a compiler

!15

MirageOS compiler

config.ml

multi-stage pipeline

mirage configure

unikernel.ml

imagemirage build

main.ml

key_gen.ml

opam

Makefile

!16

MirageOS compiler

config.ml

multi-stage pipeline

mirage configure

unikernel.ml

imagemirage build

functor
application

main.ml

key_gen.ml

opam

Makefile

!17

Application Functor

‣ A MirageOS application is a
functor:

‣ using the standard

signatures as parameters

‣ with a start function

‣ Time: abstract driver for timers

‣ Key_gen: typed cross-stage

persistence

unikernel.ml

 18

Application Functor

The mirage website needs:

‣ 1 TCP/IPv4 stack

‣ 3 read-only key/value stores

- private key

- raw contents

- templates

‣ 1 clock device to get the
current time

unikernel.ml

 19

MirageOS compiler

config.ml

multi-stage pipeline

mirage configure

unikernel.ml

imagemirage build
application

manifest

main.ml

key_gen.ml

opam

Makefile

!20

Application Manifest
‣ Application manifest in OCaml

‣ Use a eDSL to describe
functors composition and
configuration keys

‣ Describe the main application
(reflect unikernel.ml)

‣ Use generic devices which will
adapt to the deployment target:

‣ network: Static IP vs. DHCP

‣ KV/RO: block device, FAT32,

crunched files, irmin, …

‣ clock: unix/xen default device

config.ml

 21

MirageOS compiler

config.ml

multi-stage pipeline

mirage configure

unikernel.ml

imagemirage buildCLI toolCLI tool

main.ml

key_gen.ml

opam

Makefile

!22

Demo

!23

MirageOS compiler
“dev mode: a.k.a. I ❤ Linux syscalls”

Hypervisor

Application

OCaml Runtime

Firmware

kernel

MirageOS compiler

Application Code

Configuration Files

Userspace and Kernel Libraries

 24

User-space and OS libraries

mirage configure --target=unix --net=socket --kv_ro=direct

“dev mode”

!25

mirage configure --target=unix --net=direct --kv_ro=fat

User-space and OS libraries
“dev mode + MirageOS TCP/IP stack + FAT block device”

!26

MirageOS compiler
“deployment mode”

Hypervisor

Application

OCaml Runtime

Firmware

MirageOS compiler no more OS!

Application Code

Configuration Files

Userspace and Kernel Libraries

 27

mirage configure --target=ukvm --net=direct --kv_ro=crunch

User-space and OS libraries
“deployment mode (xen)”

!28

Conclusion

!29

Summary

‣ MirageOS is a modular operating system written in OCaml

‣ End-goal is to allow individual libraries to be extracted/verified/
certified individually and composed together

‣ The only way to build end-to-end “high-insurance” services
(application + full runtime environment)?

!30

‣ A company created in Paris to commercially support
MirageOS and to promote its use in the industry

contact: Thomas Gazagnaire

‣ A non-profit organisation created in Berlin to work on secure
infrastructure (internet services) using MirageOS

contact: Hannes Mehnert

‣ research on MirageOS continues in Cambridge: IoT,
embedded software, privacy-preserving systems, data-
science, etc

contact: Anil Madhavapeddy

MirageOS in 2018

!31

Join the community!

http://retreat.mirage.io/

mirageos-devel@lists.xenproject.org
https://mirage.io/

https://discuss.ocaml.org/tags/mirageos

!32

http://retreat.mirage.io/
mailto:mirageos-devel@lists.xenproject.org
https://mirage.io/

Thank you!
Any questions?

�33

