
1

Diagnosis from Scenarios

Loı̈c Hélouët, Thomas Gazagnaire, Blaise Genest
IRISA (INRIA/ENS/CNRS), Campus de Beaulieu, 35042 Rennes Cedex, France

Keywords: scenarios, partial orders, diagnosis.
Abstract: Diagnosis of a system consists in
providing explanations to a supervisor from a
partial observation of the system and a model
of possible executions. This paper proposes a
partial order diagnosis algorithm that recovers
sets of scenarios which correspond to a given
observation. The main difficulty is that some
actions are unobservable but may still induce
some causal ordering among observed events.
We first give an offline centralized diagnosis
algorithm, then we discuss a distributed version.

I. I NTRODUCTION

The role of diagnosis is to provide information
to supervisors of a system when faults occur.
The objectives are manifold: either detect that
the system has reached a set of critical states that
should be avoided, or try to reconstruct an execu-
tion that has led to a fault. However, information
retrieval is most of the time performed from
partial observations: distributed systems are now
so complex that monitoring every event of an
execution is not realistic. In telecommunication
systems, for example, the size of logs recorded
at runtime grows fast, and can rapidly exceed
the storage capacity, or the computing power
needed to analyze them. Furthermore, the time
penalty imposed by the observation to the system
also advocates for a partial observation. Hence, a
choice of a subset of observable events is clearly
a part of the design of a complex system.

For the first kind of diagnosis, that can be
defined asfault diagnosis, the main question is
whether for given sets of faults and observable
events the system is diagnosable, i.e. the occur-
rence of a fault can eventually be detected after
a finite number of observations [8]. Diagnosis
is then performed by an observer that monitors
observable actions and raises an alarm when
needed.

For the second kind of diagnosis, that we will
call history diagnosishereafter, the question is
to build a set of plausible explanations of an
execution from a model of a system and an
incomplete observation of the faulty execution
[1]. The main idea behind this approach is to
exploit causality in a system to restrict the set

of explanation to the smallest possible subset of
runs. Then, these potential explanations can be
exhaustively checked to find the actual fault.

Within this paper, we will address history
diagnosis of distributed systems. The major ob-
jective of this work is to exploit concurrency in
the system, and avoid combinatorial explosion
using partial order models. It is well-known that
interleaved models can be of size exponentially
greater than concurrent model. Hence, as long as
an analysis of a system does not need to study
all global states, true concurrency models seem
well adapted to provide efficient solutions. In this
paper, we propose to model the diagnosed system
with High-level Message Sequence Charts (or
HMSCs for short), a scenario formalism [4]. The
observation of the system(i.e. the information
stored in a log file after an execution) is provided
as a partial order, and the explanation is given
as a set of partial order representations of all
possible executions that may have generated the
observation according to the model.

The authors of [1] already address history
diagnosis with partial order model (safe Petri net-
s). In this approach, diagnosis is an incremental
construction of an unfolding of the net model.
The incremental aspect of this approach is clearly
well adapted for online diagnosis, but does not
allow for a compact representation of explana-
tions. When unobservable events can be iterated
an unbounded number of times, this incremental
approach becomes impossible (unfolding may
never stop).

The algorithm detailed in this paper starts from
an observationO given as a partial order, an
HMSC modelH of the possible behaviors of the
system, and the knowledge of the type of events
that have been recorded inO. We also assume
that the observation mechanisms that have been
implemented within the distributed system are
lossless. That is, if an observed event does not
appear in the observation, then we have the
information that it did not occur.

We do not impose restrictions on the obser-
vation architecture: observed events occurrence
may be collected in a centralized way, or sepa-
rately by distributed observers. However, we will
consider that for a given process, all observed
events are totally ordered. Furthermore, the pro-

2

cesses may be equipped to record the respective
order between events located on different pro-
cesses (this ordering can be deduced for example
from messages numbering, or from a vector
clock). Hence the observationO may specify
some particular ordering between events that is
not only induced by emissions and receptions
of messages. This additional information can be
used to refine the set of explanations provided
by the model. Indeed, if an evente happens
before an evente0 in the observation, then in
any possible explanation provided by the model,e must be causally related toe0.

The main result of the paper is that we can still
finitely represent the set of runs of a distributed
system that explains a particular observationO.
The explanation produced is a generator of all
executions of our model for which the projection
on observed events is compatible withO. More
precisely, we show that the set of explanations
can be described by another HMSC. This gives
the basis of a centralized diagnosis algorithm.

For the distributed algorithm, we use a prop-
erty showing that a global explanation can be
reconstructed from local diagnosis performed for
each pair of instances. Thus, each instance com-
putes separately the set of executions that can
explain what it has observed. The only (small)
information that needs to be exchanged between
processes is the events that were observed so far.
At the end of the execution, a last step might
be needed to combine together the distributed
explanations. Notice that such an algorithm may
also be used to track a fault on the fly, when
a behavior that is not part of the model of the
system is considered as faulty.

This paper is organized as follows. Section II
introduces the scenario language used, and sec-
tion III introduces the formal definition of an
observation. Section IV defines the main algo-
rithms for diagnosis and gives complexity results,
and shows how to retrieve explanations in a
distributed framework. Section V concludes this
work. Due to lack of space, proffs are omitted,
but can be found in an extended version from the
author’s webpage.

II. SCENARIOS

Scenarios are a popular formalism to define
use cases of distributed systems. Several lan-
guages have been proposed [4], [7], but they are
all based on similar representations of distributed
executions with compositions of partial orders.
We use Message Sequence Charts, a scenario
language standardized by ITU [4]. MSCs are
defined by two levels. At the lowest level, Basic
Message Sequence Charts define simple inter-
actions among components of a system called

instances. An instance usually represent a pro-
cess, or a group of processes of a distributed
system. These instances exchange messages (in
asynchronous mode), and can also perform atom-
ic actions. Formally, a bMSC can be considered
as a pomset which events are labeled by action
names and by the instance performing the event:

Definition 1: A Basic Message Sequence
Chart is a tuple B = (E;�; A; I; �; �;m),
whereE = ES [ER [EA is a set of events
that can be partitioned into a set of message
emissionsES , a set of message receptionsER,
and a set of atomic actionsEA, �� E � E
is a partial order relation (reflexive, transitive,
antisymmetric),A is an alphabet of action names,I is a set of instances,� associates an action
name to each event and� associates a locality
to each event.m : ES �! ER is a one to
one function that pairs message emissions and
receptions. Furthermore, the order on instances
is a total order denoted by�i, that is 8e; f 2E; �(e) = �(f) = i =) e �i f or f �i e.
The causal ordering among events comes from
the sequential order on processes and from mes-
sages. Hence, we have�= (m [Si2I �i)�,
where (:)� denotes the transitive closure of a
relation. We will also suppose that there is no
self-overtaking among messages of the same type
(weak FIFO property), i.e.: for alle �i e0; f 0 �jf with m(e) = f andm(e0) = f 0, we have that�(e) 6= �(e0).

Figure 2 shows three examples of bMSCs
calledM1, M2 andM3. In bMSC M3, three
processesfP1; P2; P3g exchange messagesm
and n. Instance are simbolized by a vertical
line enclosed between a white and a black
rectangle. Messages are symbolized by arrows
from the emitting instance to the receiving one.
Atomic actions are symbolized by a rectangle
enclosing the name of the action. For a more
detiled description of all MSC features, we refer
interested readers to [4]. In the following, we
will consider that executions of a distributed
system are provided as bMSCs. Note however
that an incomplete observation of a distributed
system is not always a bMSC: we can for ex-
ample observe a message emission but forget
the reception. An observation of a system is
then better defined as alabeled partial orderi.e.
a tupleO = (EO ;�O; AO ; IO ; �O; �O) whereEO ; AO; IO ; �O ; �O have the same meaning as
for bMSCs, and�O is given by the total ordering
on each process, plus some additional order-
ing on different instances (deduced for example
from packet numbers in a protocol). Actually,
an observation is the projection of a bMSC.
The projection of a bMSC B on a subset of
its eventsE0 is the restriction ofB to E0,

3

i.e. the labeled partial order�E0(B) = (E0;�\E02; AjE0 ; I; �jE0 ; �jE0 ;mjE0). Note that the
projection of a bMSC is not always a bMSC,
as the message mapping is not always preserved.
We will often consider projection of a bMSC on a
set of instancesJ � I , and denote this projection�J (B). More formally, �J(B) = ���1(J)(B).
We will also use the projection of a bMSC on
a set of event type�, denoted by��(B) =���1(�)(B). For more material on scenario pro-
jections, interested readers are referred to [3].

From now on, we will consider that all bMSCs
are defined on similar set of instancesI , even if
these instances are not active in the bMSC. We
will also denote byB� the empty scenario. bM-
SCs alone do not have enough expressive power
to describe complex behaviors. They can only
define finite and very linear executions. However,
the bMSC formalism has been extended with
several operators to allow iterations, alternatives,
and sequential composition. Sequential compo-
sition allows to glue two bMSCs along their
common instance axes to build larger executions.
It is formally defined as follows:

Definition 2: Let B1, B2 be two bMSCs. The
sequential compositionof B1 andB2 is denotedB1 � B2, and is the bMSCB1 � B2 = (E1]E2;�1�2; A1[A2; I1[I2; �1�2; �1�2;m1]m2),
where�1�2= (�1 [�2 [f(e1; e2) 2 E1 �E2 j �(e1) = �(e2)g)�, with] denoting disjoint
union.

a

a

P2 P3

n

bMSC M2

P1 P2

bMSC M1 o M2
P3

n
m

P1 P2

bMSC M1

m

Fig. 1. Sequential composition of bMSCs

Note that sequential composition does not im-
pose synchronization among instances: events ofM1 and M2 can still be concurrent. Figure 1
shows an example of sequential composition
of two bMSCs. In the compositionM1 �M2,
action a and the emission of messagem, for
example, are still concurrent events. The MSC
formalism proposes several other operators such
as alternative and iteration. These composition
mechanisms are best described by a formalism
called High-level Message Sequence Charts (or
HMSCs for short). HMSCs are a kind of partial

order automata, that should be considered as
execution generators. More formally, an HMSC
can be described as follows:

Definition 3: A High-level Message Sequence
Charts (or HMSC for short) is a tupleH =(N;�!;M; n0; F), whereN is a set of nodes,�!� N �M�N is a transition relation,M is
an alphabet of bMSCs,n0 is an initial node, andF is a set of accepting nodes. A HMSC defines a
set of successful pathsPH which goes from the
initial node to some final node. We associate each
successful path� = n0 M1�! n1 : : : Mk�! nk, with
a bMSCB� which is the sequential composition
of labels along path�, i.e.B� = M1 � � � � �Mk.

In a HMSC, nodes define potential global
states of the system, that are used to glue bMSCs.
Note however that these nodes do not impose
any synchronization among processes, and that
a system may Figure 2 contains an example of
a HMSC H . The initial noden0 is connected
to a downward triangle, and the only final noden1 is depicted by an upward triangle. The tran-
sitions ofH are (n0;M1; n0); (n0;M2; n1) and(n0;M3; n0).

a b

P1 P3

bMSC M1 bMSC M2

a b

P1 P3

Observation O

m n

P1 P2 P3

bMSC M3

HMSC H

n0

n1

Fig. 2. A HMSC example and an observation

III. O BSERVATION

Let us now define the essential notions that
will be used to find explanations of an obser-
vation. An observationO performed during an
execution of a system should be an abstraction
of an existing execution (i.e. an abstraction of a
bMSC). We will suppose that on each instance
of our distributed system, a subset of events is
monitored: every time a monitored evente is
executed, a message is sent by a local observer to
the supervision mechanisms. In the following, we
will only suppose that observations are lossless

4

(all events that are monitored are effectively re-
ported when they occur), and faithful (observers
never send events that have not occurred to
the supervising architecture, and do not create
false causalities). The set of types of monitored
events is�obs. The observations can contain
additional ordering information (built from local
observations and additional information such as
packet numbers, vectorial clocks,...), and are thus
considered as labeled partial orders. We will also
consider that for a given instance, the observa-
tion is a sequence, that is, the communication
between local observers and the supervision ar-
chitecture is FIFO. Note also that events are
not observed on all instances, hence we define
a setIobs � I on which events are monitored.
Let O = (EO ;�O; AO ; IO�O; �O) be a partial
order. We say that a set of eventE � EO is a
prefix of O if for all a �O b with b 2 E, thena 2 E. As already mentionned, an executionB is
an explanation for on observationO only if they
are compatible w.r.t. the sets of events observed
and their causal ordering. This compatibility is
defined as an embedding relation fromO to B
as follows:

Definition 4: Let O = (EO ;�O;�obs; Iobs; �O ; �O) be a labeled partial
order. LetB = (EB ;�B;�B ; �B ; �B ;mB) be
a bMSC. We will say thatO matchesB with
respect to the observation alphabet�obs and
write O ֌ B whenever there exists an injective
function f : E0 ! EB such that:� f(EO) is a prefix of��obs(B),� �O(e) = �B(f(e)),� e � e0 =) f(e) �B f(e0).

O1 B1 O2 B2

b

a

b

a
O B

3 3 O 4 B4

b

a

a

c

a

a

b

b

a

a

b

a

a

b

a

a

b

a

b

b

a

Fig. 3. Two matching examples w.r.tfa; bg and two counter
examples

More intuitively, the first requirement of this
definition means that all events of an explanation
have not yet been collected by the observers
when the diagnosis is performed, but that when
an event in an execution is observed, all its prede-
cessors (according to the observation) have also
been observed. Let us illustrate our definition on
the examples of Figure??, where�obs = fa; bg,O1; O2; O3; 04 are observations,B1; B2; B3; B4
are bMSCs, and the matching relationf that
sends an observation onto an execution is rep-
resented by dotted arrows. Let us considerO1
and B1: there is an injective mapping from
the observation to a prefix of the explanation.

a’s b are concurrent in the observation, but the
orderO1 can clearly be injected inB1, henceO1 ֌ B1. For the pairO2,B2, there is also an
injective mapping that mapsO2 to a prefix of
the projection ofB2 onto�obs. For the pairO4,B4, a andb are unordered in the explanationB3
and hence the observationO3 can not be injected
in B3. For the pairO4, B4, there is no injective
mapping satisfying the three conditions. Indeed,
the unmatched occurrence ofb should have been
observed. Hence,B4 is not an explanation ofO4.

This matching definition is close to the defi-
nition of matching proposed by [6], [5]. It is easy
to see that the functionf is unique ifO matchesB: f : EO ! EB is the function that sends
the k-th event ofEO on instancei onto thek-
th event of��obs(B) on instancei for all k andi 2 Iobs. Notice thatO needs not contain event
of every type in�obs, nor an event on every
instance ofIobs. However, the fact that there
are no event of some type inO rules out some
possible explanations. Furthermore, an observ-
able event located on some instance ofIobs in B
cannot precede any event off(EO), as otherwisef(EO) would not be a prefix of��obs(B). These
properties can be used to extract explanations of
an observation out of a model of the system.

Definition 5: Let O be a partial order andH
be an HMSC. The set of explanations provided
by H for an observationO is the set of pathsP � PH such that8� 2 P , O matchesB� with
respect to the alphabet�obs.

Notice that the set of explanations provided
by H is not always finite nor its linearization
language is regular, but we will prove that it can
be described by an HMSC in Theorem 1. As
already mentioned, observations may be collect-
ed either in a centralized or a distributed way,
and observed events can be sent to supervising
mechanisms via asynchronous communications.
Hence, the model of our system can describe runs
which are longer than the observations collected
so far. Note however that thanks to the prefix
condition, our framework does not impose ob-
servations to be complete.

IV. D IAGNOSIS

The main objective of our diagnosis approach
is to extract from an HMSCH a generator for the
set of explanationsPO;H of an observationO.
This generator can be defined as a quotient HM-
SC ofH . This quotient is computed as a product
between the HMSC and the observation, with
synchronization on monitored events. Hence, we
will build a new automaton whose nodes are
product of a node of the original HMSC with
the subset of events ofO observed so far, that

5

will be called theprogressof the observation.
For instance, a path leading to the product state(v; EO) should generate an execution that em-
bedsO.

The main difficulty is to know the influence of
unobservable events in a run of an HMSC on the
respective order of observable events. As already
mentioned, valid explanations may contain an in-
finite number of unobserved events. However, we
can always keep an abstract and bounded repre-
sentation of these unbounded orders. This will be
modeled by a partial functiong : I �! 2O that
associates to each instancei 2 I the observed
events ofO preceding the last event (observed
or not) on instancei in the HMSC. Notice that
this function is not redundant with the order ofO
since the observation and the run of the HMSC
can define different orders on observed events.
Let us build the following HMSC associated to
an observationO and a HMSCH on an alphabet�obs: AO;H = (Q; �;M; q0; F 0), where� is a
new transition relation,Q � N �Prefix(O)�F ,
andF is the set of functions fromI to 2O.� q0 = (n0; B�; g;),� F 0 = f(n;EO; g) j n 2 Fg,� �(n;E; g);M; (n0; E0; g0)�2 � with E 6= O

iff

– n M�! n0,
– E0 = E] ��Obs (M) is a prefix ofO,
– g0(p) = g(p) [fg(�(e)) j e <Me0; �(e0) = pg [fe 2 ��Obs (M) je <M e0; �(e0) = pg,
– For all a; b 2 E0 with a <0 b, eithera; b 2 E, or a <M b, or 9c <M b witha 2 g(�(c)).� �(n;EO; g);M; (n0; EO ; g)� 2 � iff n M�!n0.

Note that g(p) is updated only when
the observation is incomplete. It is updat-
ed to memorize the observable events in the
causal past of the last event (observed or
not) executed by each instance. Similarly, we
make sure during construction of a transition�(n;E; g);M; (n0; E0; g0)� 2 � that any ordera <O b is preserved inE0: either a; b precede
all events ofM and their ordering was already
checked, or they are ordered inM , or a is in M
andb precedes an event ofM that happens beforea. We denote byPO;H � PH the set of paths ofH that are projections on the first component of
successful paths ofAO;H .

Theorem 1:LetAO;H be the HMSC comput-
ed from O and H , and � 2 PH . ThenO ֌B� iff � 2 PO;H . Moreover,AO;H is of sizeO(jH j � jOjjIj�jIObs j).

Intuitively,AO;H is the generator of all expla-
nations of observationO provided by the HMSC
modelH . The restriction ofAO;H to coaccessi-
ble states ofF 0 is thediagnosisprovided for ob-
servationO from the HMSC ModelH . It is obvi-
ous from the construction of� that any accepting
path� of AO;H generates a bMSCB� such thatO ֌ B�. Note however that these path are
not the minimal path embeddingO. To consider
only minimal path, one should consider only the
relation �0 = � \ f�(n;E; g);M; (n0; E0;M 0)� jE 6= EOg, and the set of accepting nodesF 0 =f(n;EO; g)g. Consider the HMSCH and the
observationO of Figure 2. The HMSC describes
the behavior of three processesP1; P2; P3. Let
us suppose that we have equipped a distributed
system to observe any occurrence of actionsa
and b and that we obtain the observationO.
Clearly,n0 M1�! n0 M2�! n1 is not an explanation
of O for the observation alphabet�obs = fa; bg,
as a and b are not causally related inM1 �M2. The automatonAO;H computed fromO
and H with this observation alphabet is given
in Figure 4. The transitions with a dark cross
symbolize transitions of the original HMSC that
cannot be fired in the diagnosis automaton. For
example, from the initial state, the transition
labeled byM2 cannot be used, as any pathp
starting with this transition would not allow a
matching fromO to Bp. One can easily verify
that O matches any bMSC composition of the
form M3� �M1 �M3 �M3 �M3� �M2. Note
that if we choose as observation alphabet�obs =fa; b; !mg, the observationO has no explanation
in H .

a

a

a

P1 { a }

P1 { a }
P2 { a }

P1 { a }
P2 { a }
P3 { a }

a

b

P1 { a }
P2 { a }

P3 { a, b }

(n0, ,)

(n0, ,)

n0, ,

M1

M3

M2

M3 M2

M3 M2

M3

M2

n0, ,

n1, ,

Fig. 4. A diagnosis automaton

6

Theorem 2:Knowing whetherH contains an
explanation for an observationO is NP-complete.
If the set of processes is fixed, the problem is in
NLOGSPACE.

Centralized diagnosis amounts to building a
diagnosis automaton of exponential size in the
number of processes. Furthermore, in some cas-
es, this state space must be entirely explored to
discover that no explanation exists (see theorem
2). Performing local diagnosis is a solution to
reduce this complexity: each instance computes
locally a partial diagnosis, that is then refined by
the calculi of other instances.

Let i; j 2 I be a pair of instances andO =(O;�O ; AO; IO ; �O ; �0) be an observation. The
local diagnosis for instancesi; j is the automatonAi;j = A�i;j (O);H with the observation alpha-
bet �obs \ ��1(fi; jg). Since an explanation of
an observation for some alphabet� is still an
explanation for any alphabet�0 � �, we have
that PO;H � PAi;j . Hence, a finer diagnosis
can be obtained from successive compositions of
local diagnosis. This composition
 is simply an
intersection, defined as a synchronous product of
two diagnosis automata. That is, for two HMSCsA and A0, �(v; w);M; (v0; w0)� is a transition
of the productA
 A0 iff (v;M; v0) 2 � and(w;M;w0) 2 �0. The next proposition shows that
when a run belongs to everyAi;j then it is an
explanation ofO:

Proposition 1: For every HMSCH and ob-
servationO, we haveAO;H =Ni 6=j2IObs Ai;j .

We know that the size ofAi;j is inO(jOj2jIj:jH j). An immediate idea stemming
from this proposition is to split diagnosisAO;H
in several problemsfAi;jgi 6=j2IObs of size 2, and
then compute the product of these local diagno-
sis. The objective is to produce a faster result
when the final diagnosis is small or empty, and to
avoid considering lots of intermediate states that
will not lead to a final state. A solution is to build
an automaton for each couple of instances and
to prune them on the fly to keep only successful
runs (i.e. runs that embed the observation). If any
of the local diagnosis becomes empty during the
computation, then we know that no explanation
exists in the HMSC model for this observation.
Otherwise, once the local computations have
been completed, we need to compute the product
of the local diagnosis to obtain the final set of
runs (that is likely to be small).

Another solution is to consider first the paths
that provide a matching for�i(O) given by the
automatonAi = A�i(O);H for somei 2 Iobs.
Pruning this automaton may be less effective than
in previous solution, because ordering cannot
be used to discriminate some paths, but this
initial step is performed with an initial com-

plexity of O(jOj � jH j). Notice thatAi;j has
to be computed only for thosei 6= j 2 Iobs
that have additional causalities implied by the
observation (which can be determined online).
If the only ordering between events located oni and j are derived from messages inO, thenAi;j = Ai
Aj .

An additional possibility to exploit property
1 is to perform an online distributed diagnosis,
following the work of [2] for example. The
strategy is then to distribute the computation ofAi;j for i 6= j 2 Iobs. Noticing thatPi;j = Pj;i,
we have to distributeIobs:(jIobsj � 1)=2 local
diagnosis, that is each instance observing some
monitored events can compute(jIobsj � 1)=2
diagnosis HMSCs on the fly, based on the ex-
ecution observed so far that is broadcasted by
every instance.

V. CONCLUSION

This paper has proposed a scenario based
diagnosis. The main objective of the approach
is to perform all calculi on partial order models,
and avoid the state space explosion due to an
interleaved search in the execution model. We
have shown that the scenario-based diagnosis can
be easily distributed.

The next step is to check how this approach
can be performed online. Another extension of
this work would be to consider diagnosis from
more powerful scenario models. Indeed, MSCs
do not allow for the design of behaviors such
as sliding windows. This can be considered as a
limitation, as these behaviors are quite frequent
in actual protocols. However, extending the sce-
nario model inconsiderately could rapidly make
diagnosis an undecidable problem (diagnosis is
not decidable for communicating automata for
example).

REFERENCES

[1] A. Benveniste, E. Fabre, C. Jard, and S. Haar. Diagnosis
of asynchronous discrete event systems, a net unfolding
approach. IEEE Transactions on Automatic Control,
48(5):714–727, May 2003.

[2] E. Fromentin, C. Jard, G.V. Jourdand, and M. Raynal.
On-the-fly analysis of distributed computations.Infor-
mation Processing Letters, 54:267–274, 1995.

[3] B. Genest, L. Hélouët, and A. Muscholl. High-level
message sequence charts and projections. InProceedings
of CONCUR’2003, 2003.

[4] ITU-TS. ITU-TS Recommendation Z.120: Message Se-
quence Chart (MSC). ITU-TS, September 1999.

[5] A. Muscholl. Matching specifications for Message Se-
quence Charts. InFoSSaCS’99, LNCS 1578, pages 273–
287, 1999.

[6] A. Muscholl, D. Peled, and Z. Su. Deciding properties
for message sequence charts. InFOSSACS’98, pages
226–242. Springer-Verlag, 1998.

[7] OMG. Uml superstructure specification, v2.0. OMG
Document number formal/05-07-04, 2005.

[8] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamo-
hideen, and D.C Teneketzis. Failure diagnosis using
discrete-event models.IEEE Transactions on Control
Systems Technology, 4(2):105–124, 1996.

