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omAbstra
tWe address the problem of o�-line fault diagnosis for distributed sys-tems. It 
onsists in �nding explanations for a given partial obser-vation of abnormal behaviour, using knowledge of system dynami
s.For this, a diagnosis algorithm must de
ide whether there exists anexe
ution that is 
ompatible with our knowledge of the system andwith the observation. We represent observations with restri
ted par-tial orders whi
h model 
ause-e�e
t relations among lo
al states, andproperties that hold at these states. We 
apture knowledge of sys-tem dynami
s with a temporal logi
 whi
h asserts the evolution ofpatterns of 
ausal orders. We show that the 
orresponding diagnosisproblem is unde
idable. However, if we limit explanations to dis-tributed behaviours in whi
h ea
h pro
ess 
ausally in
uen
es everyother pro
ess in a bounded manner, the restri
ted diagnosis problembe
omes de
idable.Keywords: Diagnosis, partial orders, logi
.1 Introdu
tionFor safety and e
onomi
al reasons, diagnosis of faults is of paramountimportan
e in domains su
h as tele
ommuni
ation networks and em-bedded systems. Diagnosis 
an be performed o�-line or online. Ino�-line diagnosis, the task is to infer missing information (unobserved�work supported by the CREATE proje
t of Region Bretagne.yWork done while this author was at IRISA/INRIA Rennes, Fran
e supportedby an INRIA post-do
toral fellowship.zWork done while this author was at ENS Ca
han, antenne de Bretagne,Fran
e.



2 Perspe
tives in Con
urren
yevents or states, faulty behaviors,...) from a partial observation of asystem, su
h as a log �le. The observation has to be partial for tworeasons. Firstly, some state information or a
tions may not be di-re
tly a

essible. Se
ondly, due to the huge size of many distributedsystems, it is simply not feasible to keep tra
k of all state information.In online diagnosis, a system is 
ontinuously monitored and faults aresupposed to be dete
ted as soon as possible after their o

urren
e.Traditionally fault diagnosis is performed by indu
tive reason-ing, using expert heuristi
 rules between faults and observations.However, su
h expert knowledge is diÆ
ult to obtain and easily be-
omes obsolete when a system's 
on�guration evolves. The so-
alledmodel-based approa
h brings more appli
able solution to fault diag-nosis. In this framework, one 
aptures knowledge of system dynami
sin some formal system model su
h as transition systems [17℄, Petrinets [2℄ or message sequen
e 
harts [10℄. Faults are inferred fromobservation and the system model. One might be interested in de-termining if an unobserved fault has o

urred, as in [17℄, or in �nd-ing all possible runs that may have led to the observation, as in [2℄.Another obje
tive ([8℄) is to 
ompute a summary of possible expla-nations, that is to annotate observations with information that helpexplaining what might have o

urred. The additional information
an be 
ausal relations among observed events, known lo
al proper-ties of states or events in the observation, and events of interest not
ontained in the logged information.One drawba
k of model-based diagnosis is that a 
omplete mod-el of the monitored system is not always available. Furthermore, itis diÆ
ult to update a system model when a system's 
on�guration
hanges. Often, the only knowledge available for diagnosis 
onsist-s of some partial properties of a system's behaviour. Consideringthis, we propose a logi
-based approa
h to diagnosis. More pre
ise-ly, we 
apture knowledge of a system's behaviour using formulae insome suitable temporal or modal logi
s. Temporal or modal logi
senables one to spe
ify properties of system's dynami
s in a naturalway. In many 
ases, updating properties of a system in the form oflogi
 formulae 
an be done easily by 
hanging a limited number ofsubformulae.In this paper, we represent behaviours of distributed systemswith restri
ted partial orders whi
h de�ne 
ause-e�e
t relations a-mong lo
al states. These partial orders are 
alled partially ordered
omputations. We propose a temporal logi
 over partially ordered
omputations and 
all it simply the logi
 of partially ordered 
om-putations (LPOC). The main feature of LPOC is to reason aboutevolution of patterns of 
ausal orders. We use temporal operators
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-Based Diagnosis for Distributed Systems 3similar to Computation Tree Logi
. The design of LPOC is motivat-ed by the fa
t that, for many distributed systems su
h as networkproto
ols, properties about their exe
utions are often available in theform of \whenever this pattern of 
ausal ordering o

urs, some oth-er pattern will follow in future", where patterns are usually shortsequen
es of message ex
hanges.We study o�-line diagnosis based on LPOC. The problem is todetermine whether there exists an explanation for a given observa-tion and a given LPOC formula � des
ribing a system's dynami
properties. An explanation is a distributed behaviour whi
h 
ouldhave given rise to the observation and whi
h satis�es the formula�. We show that this problem is unde
idable in general. The unde-
idability result is mainly due to the unde
idability of satis�abilityproblem of LPOC. We note that the satis�ability problem of severalsimilar temporal logi
s in the literature are unde
idable. These in-
lude m-LTL [15℄, a lo
al temporal logi
 on Lamport diagrams, andtemplate message sequen
e 
harts [9℄. However, for a given K, if welimit explanations to so-
alled K-in
uen
ing distributed behavioursin whi
h ea
h pro
ess 
ausally in
uen
es every other pro
ess in abounded manner, then the restri
ted diagnosis problem is de
idable(for the given K). Furthermore, one 
an e�e
tively 
ompute a 
om-pa
t summary of all K-in
uen
ing explanations.In the next se
tion, we introdu
e the syntax and semanti
s ofthe logi
 LPOC. Se
tion 3 de�nes the diagnosis problem asso
iatedwith LPOC and show that it is unde
idable. Se
tion 4 establishesthe de
idability of the restri
ted diagnosis problem where only K-in
uen
ing explanations are 
onsidered. We also analyze the 
om-plexity of the de
ision algorithm. Se
tion 5 dis
usses related workand postulates some future dire
tions. To redu
e 
lutter, some proofsare omitted, but 
an be found in an extended version in [19℄.2 Logi
 of Partially Ordered ComputationsThrough the rest of the paper, we �x a �nite nonempty set P ofpro
ess names, and A a �nite nonempty set of atomi
 propositions.We let p; q range over P.De�nition 1. A partially ordered 
omputation (or 
omputation forshort) over (P;A) is a tuple (S; �;�; V ) where:� S is a �nite set of (lo
al) states.� � : S ! P identi�es the lo
ation of ea
h state. For ea
h p 2 P,we de�ne Sp = fs 2 S j �(s) = pg.



4 Perspe
tives in Con
urren
y� � � S � S is a partial order, 
alled the 
ausality relation.Furthermore, for ea
h p, � restri
ted to Sp�Sp is a total order.� V : S ! 2A is a labeling fun
tion whi
h assigns a set of atomi
propositions to ea
h state. We 
all V (s) the valuation of s.Intuitively, a 
omputation (also 
alled Lamport diagram in theliterature [15℄) represents the 
ausal ordering among lo
al states in adistributed exe
ution, in whi
h states of ea
h pro
ess are sequentiallyordered. The valuation of lo
al state s 
olle
ts the atomi
 proposi-tions that hold at s. Figure 1-a) shows a 
omputation. States aredesignated by bla
k dots with asso
iated name s1; : : : ; s6. Pro
essesP;Q;R are represented by verti
al lines, and states lo
ated on a pro-
ess line are ordered from top to bottom. Finally, valuations of statestake value in fa; b; 
g, and are represented between two bra
kets nearthe asso
iated state. Note that we 
onsider only �nite 
omputations,sin
e we address only o�ine diagnosis in this paper. We will say thattwo 
omputations (S; �;�; V ) and (S0; �0;�0; V 0) are isomorphi
 i�there is a bije
tion f : S ! S0 su
h that �(s) = �0(f(s)) for any s 2 S,s1 � s2 i� f(s1) �0 f(s2) for any s1; s2 2 S, and V (s) = V 0(f(s)) forany s 2 S. We identify isomorphi
 
omputations and write W �W 0if Wand W 0 are isomorphi
.
s1s2
s3

P Q R s5
s6

fa; bgfag
fbg

fb; 
g
fbgs4 f
g fag

fbg

P s5fb; 
gR
s2
s3Figure 1: a) A 
omputation W b) the 1-view of s3 in WLet (S; �;�; V ) be a 
omputation, and s; s0 2 S. As usual, wewrite s < s0 when s � s0 and s 6= s0. For ea
h p 2 P, we de�ne�p� S � S as: s �p s0 i� s; s0 2 Sp, s < s0, and there does notexist s00 2 Sp with s < s00 < s0. That is, �p is the \immediate"sequential ordering of states belonging to p. We let l � S � S bethe least relation su
h that � is the re
exive and transitive 
losureof l. For ea
h p; q 2 P with p 6= q, let us de�ne �pq� S � S asfollows: s �pq s0 i� s 2 Sp, s0 2 Sq, and s l s0. We also de�ne�= ([p2P �p)S([p;q2P;p6=q �pq). We note that < is in fa
t the
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losure of �. If s � s0, we say s0 is a (
ausal) su

essorof s, and 
all s a (
ausal) prede
essor of s0. We emphasize that � isnot equal to l. Indeed, l does not ne
essarily 
apture the relationsde�ned by the lo
al ordering on pro
esses. Consider for instan
estates s5 and s6 in Figure 1-a: we have s5 � s6, but not s5 l s6.A state s is minimal if it has no prede
essor, and maximal if it hasno su

essor. A 
ausal 
hain is a sequen
e s1s2 : : : sn of states wheres1 � s2 � : : :� sn.In the sequel, we de�ne a temporal logi
 of partial-order 
ompu-tations (
alled \LPOC" for short) to reason about distributed behav-iors. It has two basi
 features. First, at a state s of a 
omputation,atomi
 formulae assert that a \pattern" o

urs in a bounded past orbounded future of s. Se
ondly, we 
onsider a bran
hing time frame-work with CTL-like operators and reason along sequen
es of 
ausallyordered states.De�nition 2. Let (S; �;�; V ) be a 
omputation, and m be a naturalnumber. The m-view of s 2 S, denoted #m(s), is the 
olle
tion ofstates s0 in S su
h that there exists a 
ausal 
hain of length at mostm starting from s0 and ending at s. More pre
isely, #m(s) = fs0 j9s0; : : : sn 2 S; n � m and s0 = s0 � s1 � : : : � sn = sg. Similarly,the m-frontier of s, denoted by "m(s), is the 
olle
tion of states s0 inS su
h that there exists a 
ausal 
hain of length at most m startingfrom s and ending at s0.Figure 1-b) shows an example of m-view. Note that the 0-viewand 0-frontier of a state s are both the singleton set fsg. Ea
hstate s has at most jPj su

essors, one belonging to ea
h Sp. Thus,indu
tively, the m-view and m-frontier of s 
ontains at most Nm =Pmi=0 jPji = 1�jPjm+11�jPj states. In order to reason about the \pattern"of a 
omputation, we also need a notion of proje
tion.De�nition 3. Let W = (S; �;�; V ) be a 
omputation over (P;A),and let A � A. The proje
tion of W onto A is the 
omputationW 0 = (S0; �0;�0; V 0) where S0 = fs 2 S j V (s) \ A 6= ;g, and �0, �0,are the respe
tive restri
tions of �;� to S0 and V 0(s) = V (s)\A forevery s 2 S0.The atomi
 formulae of our logi
 will assert that the proje
tionof the 
omputation formed from the m-view or the m-frontier of astate is isomorphi
 to a given 
omputation. We are now ready tode�ne the logi
 LPOC.De�nition 4. The set of LPOC formulae over a set of pro
esses Pand a set of atomi
 propositions A, is denoted by LPOC (P;A), andis indu
tively de�ned as follows:



6 Perspe
tives in Con
urren
y� For ea
h p 2 P, the symbol lo
p is a formula in LPOC (P;A).� Let m be a natural number, A be a subset of A, and T = (S; �;�; V ) be a 
omputation su
h that V (s) � A for every s 2 S. Then#m;A(T ), "m;A(T ) are formulae in LPOC (P;A).� If ';'0 are formulae in LPOC (P;A), then EX', EU(';'0) areformulae in LPOC (P;A).� If ';'0 2 LPOC (P;A), then :' and ' _ '0 are formulae inLPOC (P;A).From now on, we shall refer to formulae in LPOC (P;A) simplyas formulae. Their semanti
s is interpreted at lo
al states of a 
om-putation. For a 
omputation W and a given state s of W , we writeW; s j= � when W satis�es �, whi
h is de�ned indu
tively as follows:� W; s j= lo
p i� the lo
ation of s is p (i.e. �(s) = p),� W; s j=#m;A(T ) i� the proje
tion of #m(s) onto A is isomorphi
to T .� W; s j="m;A(T ) i� the proje
tion of "m(s) onto A is isomorphi
to T .� W; s j= EX' i� there exists a state s0 in W su
h that s0 is a
ausal su

essor of s and W; s0 j= '.� W; s j= EU(';'0) i� there exists a 
ausal 
hain s1s2 : : : sn in Wwith s = s1. Further, there exists an index i in f1; 2; : : : ; ngwith W; si j= '0, and W; sj j= ' for every j in f1; 2; : : : ; i� 1g.The semanti
s for boolean 
ombinations and negations of formu-lae is as usual. We assume the standard boolean operators. We de-�ne some derived temporal operators as follows: EF' � EU(true; '),EG' � EU(';'^:EXtrue), AX' � :EX(:'), AF' � :EG(:'), andAG' � :EF:'. We 
an also assert the truth of an atomi
 proposi-tion a at a state of a 
omputation with 'a = Wp2P�lo
p^ #0;fag(Tp;a)�,where ea
h Tp;a is the 
omputation 
ontaining a singleton state oflo
ation p and valuation fag.For a 
omputation W and a LPOC formula ', we say that Wsatis�es ', written W j= ', i� there exists some minimal state sminof W su
h that W; smin j= '. We say that ' is satis�able i� thereexists a 
omputation W su
h that W j= '.For appli
ation to diagnosis, it is useful to de�ne the notionof a 
omputations satisfying a 
olle
tion of formulae, one for ea
hpro
ess. Formally, for a 
omputation W = (S; �;�; V ) and a P-indexed family of formulae f'pgp2P , we say W satis�es f'pgp2P ,writtenW j= f'pgp2P by abuse of notation, i� the following 
ondition
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-Based Diagnosis for Distributed Systems 7holds: for ea
h p 2 P, Sp 6= ; and W; sp j= 'p where sp is theminimum state in Sp (i.e. sp � s for every s 2 Sp). Note thatW j= f'pgp2P i� W j= Vp2PEU(:lo
p; lo
p ^ 'p).We have 
hosen the existential until operator be
ause it is essen-tial in asserting properties su
h as \whenever some pattern T o

urs,some other pattern T 0 will follow". More pre
isely, this demands thatalong every 
ausal 
hain, whenever a pattern T o

urs, pattern T 0should o

ur later and no more pattern T 
an o

ur again before thepoint at whi
h the pattern T 0 has o

urred. This kind of propertiesare 
ommonly needed in pra
ti
al appli
ations.Let us de�ne a simple example with LPOC. We de�ne a formulameaning that whenever a 
onne
tion phase des
ribed by a patternT
onn o

urs between two pro
esses Client and Server, then a datatransfer des
ribed by a pattern Tdata ne
essarily o

urs later. Thisformula 
an be expressed by AG', where :' = (lo
Client^ "2;A(T
onn)) =)(EX(lo
Client^EX(EU(lo
Client; lo
Client^ " 2;A0(Tdata)))), where thepatterns T
onn and Tdata are des
ribed in Figure 2,A = fdis
; no
lient; 
lient; 
onne
tedg, andA0 = fDataSent;DataRe
v;DataA
kg.
Figure 2: Two patterns3 DiagnosisAn usual framework to perform diagnosis (see for instan
e [2, 10, 17℄)in a distributed system is as follows. A 
entral agent, 
alled the diag-noser, 
olle
ts information from some pro
esses in the system. Ea
hpro
ess is equipped with me
hanisms that signal information to thediagnoser. This equipment 
an be implemented by means of 
odeinstrumentation, or by hardware me
hanisms that raise alarms andsends them to the diagnoser. Of 
ourse, due to the size of runs of realsystems, the diagnoser only 
olle
ts a limited subset of what really



8 Perspe
tives in Con
urren
yo

urs in the system. The 
olle
ted information on observed statesand 
ausal dependen
ies is 
alled an observation. From this obser-vation and a model of the system, the diagnoser 
an then outputan explanation of what have been observed. This generi
 frameworkis depi
ted in Figure 3: pro
esses are represented by squares, 
on-ne
ted by 
ommuni
ation links. Bla
k squares symbolize the lo
alobservation me
hanisms, that send their observations to the diag-noser, symbolized by the 
entral ellipse.
Figure 3: A diagnosis frameworkIntuitively, an observation des
ribes everything that is \re
ord-ed" during the exe
ution of some pre�x of a 
omputation. We as-sume that the monitoring me
hanisms transmit \re
orded" obser-vable atomi
 propositions to the 
entral diagnosis system. Onlyre
ords of the same pro
ess are guaranteed to be re
eived by the
entral diagnosis system in the order they were sent. In addition tolo
al observation on ea
h pro
ess, observations 
ontain some 
ausalordering among observed states lo
ated on di�erent pro
esses. Thisallows �nest des
riptions of observed behaviors, and to rule out someexplanations that might be 
ompatible with the shu�e of lo
al ob-servations during diagnosis. This 
ausal ordering 
an be inferredif observations are tagged for instan
e with ve
torial 
lo
ks [14, 6℄.Nevertheless, the observation ar
hite
ture and the way 
omputationsare logged is out of the s
ope of this work.Our goal is to use LPOC for diagnosis. We shall represent knowl-edge of system dynami
s by a P-indexed family f�pgp2P of formulae.We also re
ord observation of partial exe
ution in the form of a 
om-putation. The obje
tive of diagnosis is to �nd explanations, alsoin the form of 
omputations, whi
h 
ould have led to the observa-tion and satis�es the P-indexed family of formulae. As there 
ouldbe many explanations, it is also desirable to 
ompute summarativeinformation of the 
olle
tion of explanations.



Logi
-Based Diagnosis for Distributed Systems 9To this end, we �x Aob � A the subset of observable atomi
propositions, and Aex � A the subset of explanatory atomi
 proposi-tions. Typi
ally, explanatory atomi
 propositions 
orrespond to thefaults or state information that 
annot be dire
tly a

essed. On theother hand, observable atomi
 proposition indi
ate state informationthat 
an be dire
tly \re
orded", for instan
e, alarms and abnormalbehavior. To formulate the diagnosis problem, we 
an now formalizethe notions of observation and explanation.De�nition 5. An observation is a 
omputation (S; �;�; V ) su
hthat for ea
h state s in S, V (s) � Aob. Let O = (SO; �O;�O; VO) bean observation and W = (SW ; �W ;�W ; VW ) a 
omputation. Then,W is an explanation for O i� there exists an inje
tive mapping f :SO ! SW su
h that:(i) 8s 2 SO, �O(s) = �W (f(s)) and VO(s) = VW (f(s)) \Aob.(ii) 8s; s0 2 SO, if s �O s0, then f(s) �W f(s0).(iii) For every s in the image of f , VW (s) \Aob 6= ;. Furthermore,for any s0 2 SW , if �W (s0) = �W (s), s0 �W s and VW (s0)\Aob 6=;, then s0 is also in the image of f .Conditions i) to iii) 
ome from the supposed faithful and non-lossy nature of the observation me
hanism. More pre
isely, 
ondition(i) means that the lo
ation mapping should be respe
ted by the ob-servation me
hanism, and that in explanations, only states at whi
hat least one observable atomi
 proposition holds may be \re
orded",and hen
e appear in the observation. Intuitively, (the truth of) anobservable atomi
 proposition 
orresponds typi
ally to the presen
eof some alarm or observed abnormal behaviour. And the monitor-ing me
hanism 
ould only dete
t the presen
e of observable atomi
propositions, but not their absen
e. We also suppose that the ob-servation me
hanisms do not produ
e atomi
 propositions that werenot observed. Hen
e, if no observable proposition hold at a state sof an exe
ution, then s is not re
orded in the observation.Condition (ii) asserts that the re
orded 
ausal orderings mustoriginate from an a
tual dependen
e in the exe
ution. The 
onverseproperty (re
ording all 
ausal dependen
ies) is not demanded, sin
esome 
ausal orderings in the explanation may not be \re
orded".For generality, we do not impose any more spe
i�
 
ondition on there
ording of 
ausality ordering. We remark however that our result-s 
ould be extended easily to deal with more spe
i�
 
ondition onre
ording of 
ausalities, whi
h may arise from parti
ular appli
ationdomains.



10 Perspe
tives in Con
urren
yCondition (iii) states that there is no loss during re
ording ofstates: if a state of pro
ess p is re
orded, then any 
ausally pre
edingstates s0 of p must be re
orded in 
ase the valuation of s0 
ontain-s observable atomi
 propositions. In other words, we assume thatthe monitoring me
hanism is itself free from faults and thus do notmiss any presen
e of observable abnormal signals. In some appli
a-tion domains su
h as tele
ommuni
ation networks, the monitoringme
hanism is also part of the observed system. In su
h situations,it may be sometimes ne
essary to 
onsider also the potential faultsin
urred by the monitoring me
hanism. However, in this paper, wewill 
onsider that the observation me
hanisms is non-lossy.Let us illustrate the notions of observation and explanation onthe examples of Figure 4. In this example, there are two pro
esses\Client" and \Server", and the observable atomi
 propositions 
on-sist of \Reset" and \Reboot" (shown in bold in Figure 4. BothW;W 0are explanations for O in Figure 4. InW , the server glit
hes, rebootsitself and requests the 
lient to reset. Upon re
eiving the requestfrom the server, the 
lient then resets itself. In W 0, the server breaksdown and reboots itself after repairing, while the 
lient resets itselffollowing dete
tion of loss of 
onne
tion (\LostConn") and failure tore-establish the 
onne
tion.
{ Reset } { Reboot }

Client Server

{ Reboot }{ Reset }

{ LostConn, Retry }

Client Server

{Repaired}

Observation O

{ SeekConn }

Explanation W’

Client Server

{ Glitch }

{ ReqClientReset }

{ Reboot }

{ Reset }

Explanation W

{ GotResetReq }

{Breakdown}

Figure 4: Two 
omputations W and W 0, and an observation OWe emphasize that while an explanationW represents a full exe-
ution of a system, an observation indu
ed byW , may have re
ordedinformation from a part ofW . Thus, the image of f may be a propersubset of the states of W whose valuation 
ontains observable atom-
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 propositions. Similarly, some 
ausal dependen
ies among observedstates may not have been saved during the observation pro
ess. Onthe examples of Figure 4, we 
an noti
e that there is a 
ausal de-penden
y between the states of W labeled by reboot and reset, butthat this 
ausality does not appear in the observation O. However,we suppose the observer is faithful, that is, it does not 
reate wrongstates or 
ausalities. Note that for given O and W , if the mappingf from O to W exists, then it is ne
essarily unique. Thus, for ea
hstate s 2 SO, it makes sense to 
all VW (f(s)) the W -valuation of s.De�nition 6. Let O be an observation, and f�pgp2P be a P-indexfamily of formulae. W is a f�pgp2P-explanation for O i� W is anexplanation for O and W j= f�pgp2P .Now we 
an de�ne the diagnosis problem asso
iated with LPOC.De�nition 7. Let P be a set of pro
esses, Aob and Aex be two setsof atomi
 propositions as before. The LPOC-diagnosis problem isde�ned as follows: given an observation O = (SO; �O;�O; VO) and aP-indexed family of formulae f�pgp2P over (P;Aob ;Aex), determinewhether there exists a f�pgp2P-explanation for O.In what follows, we will often omit the subs
ript p 2 P. Theformulae f�pg spe
ify some knowledge about exe
utions of the sys-tem, for instan
e some faulty behaviors. The obje
tive of diagnosis isto �gure out whether there exists an explanation for what has beenobserved, and hen
e dete
t if the a
tual behavior of the whole sys-tem was faulty or not. In 
ase an explanation exists, we also want toobtain more detailed information about the possible truth values ofpropositions in Aex at ea
h observed state. We de�ne the (explanato-ry) summary of O under f�pgp2P as the mapping g : SO ! 2Aex su
hthat for every s 2 SO, g(s) � Aex , and a 2 g(s) i� there exists anexplanationW for O withW j= f�pgp2P and a is in the W -valuationof s. Thus, when the answer to the diagnosis problem is positive, wewant further to 
ompute the summary of O. Unfortunately, in thegeneral 
ase, the LPOC-diagnosis problem is unde
idable (and so isthe 
omputation of summaries).Theorem 8. The LPOC-diagnosis problem is unde
idable.Proof sket
h: By a redu
tion from the Post Corresponden
e Prob-lem (PCP), similar to that used in de
ision problems related to mes-sage sequen
e 
harts [9℄. The 
omplete proof of this theorem 
an befound in the extended version.



12 Perspe
tives in Con
urren
y4 Diagnosis with K-In
uen
ing ExplanationsWe have shown in previous se
tion (Theorem 1) that the diagnosisproblem is unde
idable in general. There are two usual ways to over-
ome this problem. The �rst one is to 
onsider a de
idable fragmentof the logi
. Note however, that en
oding a PCP be
omes possibleas soon as there is a way to des
ribe sequen
es of properties lo
atedon a given pro
ess, and to de�ne a mapping of states on di�erentpro
esses that respe
ts the ordering. This is why in most 
ases verysmall fragment of partial order logi
s be
ome unde
idable when norestri
tion is imposed on the kind of model 
onsidered. Then, thequestion that naturally arises is whether we 
an identify a sub
lassof 
omputations for whi
h LPOC diagnosis is tra
table. For this, weidentify the sub
lass of K-in
uen
ing 
omputations, and show thatthe LPOC diagnosis problem (and thus 
omputing the summary) isde
idable within this 
lass.De�nition 9. Let P be a set of pro
esses, Aob be a set of observableatomi
 propositions, Aex be a set of atomi
 explanatory propositions.Let W = (S; �;�; V ) be a 
omputation, and p; q 2 P with p 6= q. The
ausal degree of p towards q in W is the maximum integer n 2 N forwhi
h there exist s1, s2, : : :, sn in Sp, and s01, s02, : : :, s0n in Sq su
hthat:(i) s1 < s2 < : : : < sn and s01 < s2 < : : : < s0n.(ii) for i = 1; 2; : : : ; n, si � s0i, that is, si is a prede
essor of s0i.(iii) s01 � sn.For K 2 N, W is K-in
uen
ing i� for any pair of pro
esses p; qin P with p 6= q, the 
ausal degree of p towards q is at most K.Intuitively, the 
ausal degree of p towards q is the maximal num-ber of events that pre
ede some event on q that p 
an exe
ute withouthaving to wait for q. The general shape of K�in
uen
ing 
omputa-tions is illustrated in Figure 5. We now state the main result of thisse
tion.Theorem 10. Given an observation O, a P-indexed family f�pgp2Pof LPOC formulae, and an integer K 2 N, one 
an e�e
tively deter-mine whether there exists a K�in
uen
ing 
omputation W whi
h isa f�pgp2P-explanation for O.An important 
onsequen
e of the above theorem is that one 
ane�e
tively 
ompute a summary of the K-in
uen
ing explanations ofO. Let O be an observation and f�pgp2P a P-indexed family of
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sn+1

r2s2 s02
sn s0nFigure 5: K�in
uen
ing 
omputationsformulae. We 
an slightly adapt the de�nition of summaries in se
-tion 3 to K-in
uen
ing 
omputations: the K-summary of O underf�pgp2P is the mapping g : SO ! 2Aex su
h that for every s in SO,g(s) � Aex , and a 2 g(s) i� there exists a K-in
uen
ing explanationW for O with W j= f�pgp2P and a is in the W -valuation of s.Corollary 11. Given an observation O, a P-indexed family f�pgp2Pof LPOC formulae, and an integer K 2 N, one 
an e�e
tively 
om-pute the K-summary of O under f�pgp2P .Through the rest of this se
tion, we prove Theorem 10 andCorollary 11. We �x the integer K, the observation O and the for-mulae f�pgp2P . Re
all from se
tion 2 that we 
an easily 
onstru
ta single formula � su
h that for any 
omputation W , W j= � i�W j= f�pgp2P . In what follows, we �x �. We will assume that the
omputations used hereafter are nonempty. It will be 
lear from theproof that this involves no loss of generality. We let WK denote theset of K-in
uen
ing 
omputations.The proof for Theorem 10 
onsists of two steps. Firstly, we showthatK-in
uen
ing 
omputations 
an be identi�ed with Mazurkiewi
ztra
es [5℄ over a suitable tra
e alphabet (�; I). This way, we 
an i-dentify K-in
uen
ing 
omputations with equivalen
e 
lasses of �nitesequen
es in �?. This en
oding is in spirit the same as the of en
od-ing of universally K-bounded message sequen
e 
harts with tra
es in[12℄. Se
ondly, we 
onstru
t three �nite state automata AutK , Aut�,AutO, running over linearizations of tra
es of (�; I). AutK 
he
ks ifan input sequen
e represents a 
omputation ofWK . For a sequen
e �representing a 
omputation W� in WK , Aut� a

epts � i� W� j= �,and AutO a

epts � i� W� is an explanation for O. The 
rux is the
onstru
tion of Aut�. We shall give Aut� in the form of a two-way
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urren
yalternating automaton, whi
h 
an be transformed to a �nite stateautomaton. The basi
 idea is similar to [7℄ and the usual transla-tion from LTL to alternating automata [18℄. The new te
hni
alityin our 
onstru
tion is in 
he
king 
onforman
e with formulae of theform #m;A(T ), "m;A(T ). Then, there exists a sequen
e in �? a

ept-ed by AutK , AutO, Aut� i� WK 
ontains a 
omputation W su
hthat W j= � and W is an explanation for O. This then establishesTheorem 10. For Corollary 11, we will show that for any state s ofO and any atomi
 proposition a 2 Aex , one 
an �nd a �nite stateautomaton Auts;a whi
h has the following property: if a sequen
e �represents a 
omputation W� in WK su
h that W� j= �, and W� isan explanation of O, Auts;a a

epts � i� a is in the W�-valuation ofO. As a result, one 
an then e�e
tively 
ompute the K-summary ofO under f�pgp2P .En
oding K-in
uen
ing 
omputations with Tra
esWe re
all that a Mazurkiewi
z tra
e [5℄ alphabet is a pair (�; I)where � is a �nite alphabet, and I � � � � is an irre
exive andsymmetri
 relation 
alled the independen
e relation. The dependen
erelation D is given by (� � �) n I. A (�nite) �-labelled poset is apair (E;v; �), where E is a �nite set, v � E � E a partial order,and � : E ! � a labeling fun
tion. As usual, we write e < e0 ifeve0 and e 6= e0. We let b< � E � E denote the least relation whosere
exive and transitive 
losure is equal to v. A (Mazurkiewi
z) tra
eover (�; I) is a �-labelled poset tr = (E;v; �) satisfying: (i) for anye; e0 2 E, �(e)D�(e0) implies eve0 or e0ve; (ii) for any e; e0 2 E, eb<e0implies �(e)D�(e0). We de�ne isomorphism of tra
es in the obviousway and write tr = tr 0 if the tra
es tr ; tr 0 are isomorphi
.Let [K℄ = f0; 1; : : : ;K � 1g. We de�ne the alphabets �pre =fpre(p; i) j p 2 P; i 2 [K℄g, and �su
 = fsu
(p; i) j p 2 P; i 2 [K℄g.Let � = P�2�pre�2�su
�2A. We de�ne � as the subset of � satisfying:�p; fpre(p1; i1); : : : ; pre(pg; ig)g; fsu
(p01; i01); : : : ; su
(p0h; i0h)g; A� 2 �i� p1; : : : ; pg are distin
t members of P n fpg, and p01; : : : ; p0h are dis-tin
t members of P n fpg. We now de�ne the dependen
e relationD � � � � as: (p;PRE ;SUC ; A) D (p0;PRE 0;SUC 0; A0) i� one ofthe following 
onditions holds:� p = p0.� p 6= p0, and for some i 2 [K℄, pre(p0; i) 2 PRE and su
(p; i) 2SUC 0.� p 6= p0, and for some i 2 [K℄, su
(p0; i) 2 SUC and pre(p; i) 2PRE 0.
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-Based Diagnosis for Distributed Systems 15We set the independen
e relation I = � � � � D. It is trivial toverify that (�; I) is a tra
e alphabet. From now on, we �x the tra
ealphabet (�; I).Let W = (S; �;�; V ) be a K-in
uen
ing 
omputation. Let usde�ne the �-labeling of W , denoted ��W (or simply �W ), as the fol-lowing fun
tion from S to �: for s 2 S, �W (s) = (p;PRE ;SUC ; A)where:� p = �(s).� pre(q; i) 2 �pre is in PRE i� s has prede
essor s0 with �(s0) = q(su
h a s0 is ne
essarily unique by the de�nition of prede
essor)and i = j mod K where j is the number of states s00 in Spsatisfying s00 < s and that s00 has a prede
essor of lo
ation q.� Further, su
(q̂; î) 2 �su
 is in SUC i� s has a su

essor ŝ0 with�(ŝ0) = q̂ (su
h a ŝ0 is also unique) and î = ĵ mod K where ĵis the number of states ŝ00 in Sp satisfying s00 < s and that s00has a su

essor of lo
ation q.� A = V (s).Note that PRE and SUC are not ne
essarily singletons, as astate may have one su

essor (reps. prede
essor) on ea
h pro
ess. Letus de�ne tr(W ) = (S;�; �W ). Remark that for W 2 WK , tr (W ) is atra
e over (�; I). Furthermore, ifW 0 is aK-in
uen
ing 
omputation,then W =W 0 i� tr (W ) = tr(W 0). Figure 6 below shows an exampleof a 2-in
uen
ing 
omputation with the asso
iated labeling. For thesake of 
larity, the subsets of atomi
 propositions that are true atea
h state are not expli
itly given, but only des
ribed by A1; : : : A9.
(q; fpre(p; 0)g; ;; A5)(q; ;; fsu
(p; 0); su
(r; 0)g; A4)
(q; ;; fsu
(r; 1)g; A6)(q; fpre(p; 1); pre(r; 0g; ;; A7)

(p; ;; fsu
(q; 1)g; A2)
(p; fpre(q; 0)g; ;; A3)

(r; fpre(q; 0)g; fsu
(q; 0)g; A8)(p; ;; fsu
(q; 0)g; A1)p q r

(r; fpre(q; 1)g; ;; A9)Figure 6: A 2-in
uen
ing 
omputation and its �-labelingA linearization of a tra
e (E;v; �) is a sequen
e �(e1) : : : �(en)where e1; : : : ; en are distin
t members of E, E = fe1; : : : ; eng, and



16 Perspe
tives in Con
urren
yfor any i; j 2 f1; : : : ; ng, eivej implies i � j. For any 
omputationW 2 WK , by a �-linearization of W , we refer to a linearization oftr(W ). We denote by Lin�(W ) the set of �-linearizations of W .Let Lin�K = SW2WK Lin�(W ). Note that 
omputations in WK 
anbe uniquely 
onstru
ted from sequen
es in Lin�K . For a non-nullsequen
e � in �?, let last(�) denote the last letter of �. For �; �0 in�?, we write � 4 �0 i� � is a pre�x of �0. We de�ne the partial orderv�? � �? � �? via: �v�?�0 i� �; �0 are non-null, � 4 �0 and thereexist �1; �2; : : : ; �h, h � j�j, su
h that � 4 �1 4 �2 : : : 4 �h 4 �0 andlast(�)Dlast (�1)Dlast(�2) : : : last(�h)Dlast(�0). For every � 2 Lin�K ,we de�ne the 
omputation po
(�) = (S�; �� ;��; V�), where:� S� is the set of non-empty pre�xes of �.� For � 2 S�, ��(�) = p i� last(�) = (p;PRE ;SUC ; A) for somePRE ;SUC ; A.� �� is the restri
tion of v�? to S�.� For � 2 S�, V�(�) = A i� last(�) = (p;PRE ;SUC ; A) for somep;PRE ;SUC .It is easy to verify that po
(�) is well-de�ned. Furthermore, for every� 2 Lin�K and W = po
(�), we have W 2 WK and � 2 Lin�(W ).Automata 
onstru
tion.We 
an build three �nite state automata AutK , AutO, Aut�whi
h have the following properties:� For � 2 �?, � is a

epted by AutK i� � 2 Lin�K .� � 2 Lin�K is a

epted by AutO i� po
(�) is a K-in
uen
ingexplanation for O.� � 2 Lin�K is a

epted by Aut� i� po
(�) satis�es �.It follows that a sequen
e � 2 �? is a

epted by the produ
t ofAutK , AutO, Aut� i� po
(�) is a K-in
uen
ing f�pg-explanation forO. We do not detail the 
onstru
tion of AutK and AutO, that 
anbe found in the extended version of this paper [19℄.Proposition 12. Let P be a set of pro
esses, A be a set of atomi
proposition, K be an integer, and � be Mazurkiewi
z tra
e alphabet
omputed from P, A and K. Then, there exists an automaton AutKof size O(j�jK�jPj2) that re
ognizes linearizations of K-in
uen
ing
omputations over P with valuations in A.We 
an reuse the 
onstru
tion of AutK to build AutO, the au-tomaton that re
ognizes K-in
uen
ing explanations of O. At ea
h
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all a state of AutK rea
hed(ie, the 
urrent K�in
uen
ing linearization explored), the part of Othat is embedded in this explanation, and some additional informa-tion about the 
ausalities that may appear in the future.Proposition 13. Let O be an observation over a set of pro
essesP, with valuations in an alphabet Aob. Let K be an integer andA � Aob be a set of atomi
 propositions. The size of AutO is at mostin O(jAutK j � 2jOj � 2jPj � (jOj � jPj)2 � (jPj �K + 1)K).Constru
tion of Aut�.We next give the des
ription of Alt�, a two-way alternating au-tomaton [13℄ that re
ognizes linearizations of K�in
uen
ing 
ompu-tations satisfying �. This automaton 
an then be transformed intoa standard �nite state automaton Aut�.We introdu
e some new atomi
 formulae in order to simplify thestru
ture of �. Re
all that for a 
omputation W and a state s of W ,the m-view or the m-frontier of s 
ontains at most Nm = Pmi=0 jPjistates. We introdu
e formulae of the form # m(T ); " m(T ), wherem 2 N and T is a 
omputation 
ontaining at most Nm states. LetW = (S; �;�; V ) be a 
omputation and s 2 S. Then W; s j=#m(T )i� the m-view of s is isomorphi
 to T . The semanti
s of "m(T ) isgiven similarly. We note that a formula #m;A(T ) is equivalent to_T 02T #m(T 0), where T is the 
olle
tion of 
omputation T 0 su
h thatT 0 
ontains at most Nm states and the proje
tion of T 0 onto A isisomorphi
 to T . Similarly, we 
an write "m;A(T ) as a disjun
tion offormulae "m(T ) with an analogous semanti
s.Let W = (S; �;�; V ) be a 
omputation and s 2 S. Let s0 2 Sand � = a1a2 : : : an be a non-null sequen
e in �?. If there exists1; : : : ; sn 2 S su
h that s0 = sn, sn � sn�1 � : : : s1 � s and�W (si) = ai for i = 1; : : : ; n, then we say s0 is a � -an
estor of s.Re
all that ea
h state in W has at most jPj prede
essors, one be-longing to ea
h Sp. Thus, we 
an in fa
t say s0 is the � -an
estor of s.We introdu
e formulae of the form #(�; � 0) where � , � 0 are non-nullsequen
es in �?. We de�ne W; s j=#(�; � 0) i� there exist states ŝ; ŝ0su
h that ŝ is the � -an
estor of s, ŝ0 is the � 0-an
estor of s, and ŝ � ŝ0.We argue that a formula #m(T ) 
an be equivalently written as aboolean 
ombination of formulae of the form #(�; � 0). Assume with-out loss of generality of T 
ontains a maximum state smax . Thus,every state in T is the � -an
estor of smax for some � of length atmost the number of states of T . Hen
e, #m(T ) is equivalent to as-serting for ea
h pair of states s; s0 in T , whether #(�; � 0), #(� 0; �), or
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tives in Con
urren
y: #(�; � 0) ^ : #(� 0; �), where s; s0 are the respe
tively the � -an
estorand � 0-an
estor of smax .Analogously, we de�ne � -des
endants and introdu
e formulaeof the form " (�; � 0) where �; � 0 are non-null sequen
es in �?. Itfollows that a formula "m(T ) is equivalent to a boolean 
ombinationof formulae of the form "(�; � 0).With the new formulae introdu
ed above, we 
an assume with-out loss of generality that � is formed from :;^;_ and the atomi
formulae lo
p, #(�; � 0), "(�; � 0), EX', EU(';'0). Furthermore, nega-tions in � only apply to atomi
 formulae.Now we are ready to des
ribe the two-way alternating automatonAlt�. The basi
 elements of Alt� are similar as in usual translationsof temporal logi
s to alternating automata (see e.g. [18℄). The maindiÆ
ulty is to deal with atomi
 formulae of the form # (�; � 0), " (�; � 0).We informally re
all some basi
s of two-way alternating automa-ta and refer to [4, 13℄ for details. Let Alt be a two-way alternatingautomaton. An input word is delimited on the left by a left markerand on the right by a right marker. Initially, Alt is at the initialstate with the head at the �rst letter of the input word. Upon read-ing the letter of the 
urrent head position, Alt 
an spawn several
opies where ea
h 
opy 
an move the head left or right and go to anew 
ontrol state. Whi
h 
ombination of 
opies 
an be spawned arepre-determined by a transition relation. A run of Alt over an inputword � is a (�nite) tree, where ea
h bran
h terminates upon rea
hingthe left or the right marker. And Alt a

epts � i� there exists a runover � su
h that every leaf 
ontains an a

epting state.For 
larity, we des
ribe only informally the operations of Alt�.The exa
t 
onstru
tion of Alt� 
an be found in the extended version.For illustration purpose, we �x an input word � = a1a2 : : : an inLin�K . We write �; i j= ' i� po
(�); a1 : : : ai j= '.Let SF (�) be the set of subformulae of � and their negations,where ::' is identi�ed with '. A state z of Alt� 
onsists of aformula ' in SF (�) and some alphabeti
 
onstraints. Su
h a state zmust verify that ' holds at the 
urrent head position i and that thealphabeti
 
onstraints should be satis�ed subsequently.Note that po
(�) j= � i� �; h j= � where a1a2 : : : ah is a minimalstate in po
(�). Thus, at the initial state, Alt� sear
hes for positionh su
h that aj I ah for j = 1; : : : ; h� 1, and upon rea
hing positionh, it veri�es that � holds at h.It now suÆ
es to explain how Alt� veri�es that a formula inSF (�) holds at the 
urrent head position. We pro
eed indu
tivelyfrom the atomi
 formulae of forms lo
p, # (�; � 0), " (�; � 0) and theirnegations, then to formulae of forms EX', EU(';'0), and their nega-
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onjun
tion and disjun
tion of formulae.Firstly, Alt� 
an easily 
he
k if lo
p or :lo
p holds at the 
urrenthead position, simply from the letter at the head position. Nextwe 
onsider atomi
 formulae of the form #(�; � 0), "(�; � 0) and theirnegations. For the input sequen
e �, we let ai = (pi;PRE i;SUC i; Ai)for ea
h i. Re
all that po
(�) = (S�; ��;��; V�) where S� is the setof pre�xes of �. For s; s0 2 S�, we write s�� s0 i� s is a prede
essorof s0 in po
(�). Consider g; h 2 f1; 2; : : : ; ng, it is easy to see thata1 : : : ag �� a1 : : : ah i� g < h and one of the following 
onditionsholds:� pg = ph. And for ea
h index i with g < i < h, pi 6= pg.� pg 6= ph and ag D ah. Further, there do not exist indi
esi1; i2; : : : ; it, t � j�j, su
h that g < i1 < i2 < : : : < it < h, andag D ai1 D ai2 : : : ait D ah.For a formula # (�; � 0), where � = b1b2 : : : bm, � 0 = b01b02 : : : b0m0 , wenote that �; ` j=#(�; � 0) i� there exist indi
es `1; : : : ; `m, `01; : : : ; `0m0 ,in f`+ 1; `+ 2; : : : ; ng su
h that:� a1a2 : : : a` �� �1 �� �2 �� : : : �� �m, where �i = a1a2 : : : a`ifor i = 1; 2; : : : ;m. And a`i = bi for i = 1; 2; : : : ;m. Thisasserts that the � -an
estor of a1a2 : : : al exists.� a1a2 : : : a` �� �01 �� �02 �� : : : �� �0m0 , where �0i = a1a2 : : : a`0ifor i = 1; 2; : : : ;m0. And a`0i = b0i for i = 1; 2; : : : ;m0. Thisasserts that the � 0-an
estor of a1a2 : : : al exists.� a1a2 : : : a`m �� a1a2 : : : a`0m0 , that is, a1a2 : : : a`mv�?a1a2 : : : a`0m0 .This asserts that the � -an
estor of a1a2 : : : al 
ausally pre
edesthe � 0-an
estor of a1a2 : : : al.Thus, to verify that a formula # (�; � 0) or its negation holds at the 
ur-rent position, Alt� moves to the left until it hits the left end markerand along the way 
he
ks the existen
e of indi
es `1; : : : ; `m; `01; : : : ; `0m0satisfying the above 
onditions. Analogously, it is 
lear how Alt� 
anverify if a formula "(�; � 0) or its negation holds at the 
urrent headposition.Finally, we note that formulae of forms EX', EU(';'0) and theirnegation 
an be handled as in usual translations of temporal logi
sover tra
es to alternating automata (e.g. [7℄). This is also the 
asefor 
onjun
tion and disjun
tion of formulae. This 
ompletes the de-s
ription of Alt�.It is not diÆ
ult to see that the number of states of Alt� isof 
omplexity O(2j�j � j�jj�j�m), where m is the maximum length of
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tives in Con
urren
y�; � 0 for all atomi
 formulae of the form "(�; � 0), #(�; � 0). It followsfrom [13℄ that Alt� 
an be transformed to a �nite state automa-ton Aut� with 2N�2N states where N is the number of states of Alt�.Che
king for the existen
e of an explanation then 
onsists in 
he
kingthe emptiness of the interse
tion of Aut� and AutO built in proposi-tion 13. The proof of Theorem 10 is now 
ompleted. �Proof of 
orollary 11: To prove Corollary 11, we �rst re
all thatif W is an explanation for O, then the inje
tive mapping from thestates of O to the states ofW di
tated in the de�nition of explanationis unique. Thus, it is easy to see that for any state s of O andany atomi
 proposition a 2 Aex , one 
an 
onstru
t a �nite stateautomaton Auts;a whi
h has the following property: if � a sequen
e� representing a 
omputation W� in WK where W� j= � and W� isan explanation of O, Auts;a a

epts � i� a is in the W�-valuationof s. Auts;a 
an then be easily 
onstru
ted from AutO by requiringthat transitions that add s to the subset of observed states of O arelabelled by letters with valuations that 
ontain a. As a result, one
an then e�e
tively 
ompute the K-summary of O under f�pgp2P ,by testing for ea
h state s of O, ea
h a in Aex , the non-emptiness ofthe produ
t of Aut� and Auts;a. �If the formula � is su
h that all frontiers and views used areat most m-frontiers or m-views, then one 
an determine whetherthere exists a K-in
uen
ing explanation W for an observation Owith 
omplexity O(W1:2W2:2W2 ), where:W1 = j�jK:jPj2 � 2jOj � 2jPj � (jOj � jPj)2 � (jPj �K + 1)KW2 = 2�j�j�N 2m�2Aex �PNmi=0 f(i)� � j�jj�j�mwith f(i) = i � 2 i24 + 3i2 +ln(i), and Nm = 1�jPjm+11�jPj . From the de�ni-tion of summaries, 
omputing a summary for O 
an then be done inO(jOj � jAexj �W1 � 2W2�2W2 ). The proof of these 
omplexity results isnot provided here, but 
an be found in the extended version of thispaper [19℄.5 Related Work and Con
lusionWe have proposed a diagnosis framework based on a new partial orderlogi
 (LPOC) over partial orders (i.e. the truth of formulae is evalu-ated at lo
al states). Unsuprisingly, satis�ability of LPOC formulae,and hen
e diagnosis are not de
idable without restri
tion. To keepde
idability of diagnosis, a restri
tion 
alled K-in
uen
e is imposedon the models. As LPOC uses the existential until operator, for agiven K, LPOC restri
ted to K-in
uen
ing 
omputations is not de-
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-Based Diagnosis for Distributed Systems 21�nable in the �rst order logi
 over the Mazurkiewi
z tra
es en
odingK-in
uen
ing 
omputations. However, it 
an be easily translated toMSO formulae. An interesting work would be to look for a fragmentthat is expressively 
omplete for the �rst order logi
 over the tra
esen
oding K-in
uen
ing 
omputations.Even with the restri
tion to K-in
uen
ing 
omputations, diag-nosis is very expensive (several exponential in the size of the formulaand exponential in the size of the observed behavior). This high 
om-plexity 
ould mean that diagnosis with LPOC is unfeasible. Notehowever that this 
omplexity is in the worst 
ases. For instan
e,the exponential in the size of the observation 
omes from the max-imal number of 
on�gurations in a partial order. In pra
ti
e, foran observation with a bounded number of pro
esses, the number of
on�gurations 
an be mu
h slower. The other 
ostly part of the diag-nosis problem 
omes from the translation from alternating automatato �nite state automata. Again this is a worst 
ase 
omplexity. Notealso that the translation of LPOC formulae into 
onjun
tion of for-mulae of the form " (�; � 0), # (�; � 0) is 
ostly only when the pattern
onsidered in the formulae are large. In general, basi
 patterns usedin partial order languages su
h as message sequen
e 
harts are rathersmall, and we argue that this should also be the 
ase with LPOC for-mulae. Some 
omplexity gains 
an hen
e be expe
ted by restri
tingthe size and the number of partial order templates 
onsidered, butalso the modalities of the formulae. Note however that most of themodalities 
hosen for LPOC seem important. The simple example ofse
tion 2 shows that the Until operator is essential to express proper-ties of the form \when T1 o

urs, T2 will o

ur later". One may alsotry to restri
t the use of negation, that is LPOC formulae would onlybe 
onjun
tions of positive assertions on the o

urren
e of patterns.Note however that the translation of an LPOC formula to a simpli�edformula on 
ausal 
hains uses negation when two states of a patternare not 
ausally related. Hen
e, even in a restri
ted setting, negationof some properties will have to be 
he
ked. So, the small 
omplexitygain that 
ould o

ur may not justify the loss of expressiveness dueto a restri
tion on negations.In [16℄, D.Peled shows that model 
he
king TLC� formulae onHigh-level Message Sequen
e 
harts (HMSCs) is de
idable. TLC� is asubset of TLC that only 
ontains next and until temporal operators,and des
ribes the shape of 
ausal 
hains in all the partial ordersgenerated by a HMSC. TLC� is 
learly less expressive than LPOC.The Propositional Dynami
 Logi
 (PDL) for message passingsystems proposed by [3℄, extends dynami
 LTL for tra
es [11℄. Model
he
king PDL properties over HMSCs is PSPACE 
omplete. [15℄
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tives in Con
urren
yproposes a lo
al logi
 LD0 and several extensions over 
omputations,with future and past modalities, and show that in the general 
ase,satis�ability is unde
idable. However, these logi
s be
ome de
idablewhen 
onsidering models of bounded size, or when 
omputations 
anbe organized as su

essive layers of �nite message ex
hanges. LD0only des
ribes 
hains of 
ausally related events o

urring in the futureor in the past of a lo
al state, while the template mat
hing in LPOCallows to des
ribe a 
omplete partial order in a bounded future or pastof a lo
al state. LPOC is then more dis
riminating than LD0, and ifwe restri
t our models to Message Sequen
e Charts (a partial orderwhere lo
ality of events and messages are expli
itly represented), itis also more expressive and dis
riminating than TLC� and PDL.Note also that for TLC�, PDL, or LD0, partial orders are seenas models of formulae, but not as elements of the logi
 itself. The
losest approa
h mixing logi
 and partial orders is 
alled "TemplateMessage Sequen
e Charts" [9℄. A template MSC is an MSC that
omports some \hole" and in
omplete messages. Roughly speaking,models for a template MSC are obtained by �lling the holes with newpartial orders, and mat
hing sendings and re
eptions of messages.The authors in
rease the power of template MSCs with pre/post 
on-dition operators. The models of these formulae are MSCs. This logi
is very expressive, but satis�ability is unde
idable when no bound isassumed on the set of models 
onsidered. However, a restri
ted frag-ment of the logi
 is proposed to model 
he
k existentially boundedCommuni
ating Finite State Ma
hines. Note however that models fortemplate MSC formulae are MSCs, while models for LPOC formulaeare arbitrary 
omputations. Even if we only 
onsider LPOC formulaeover MSCs, LPOC and template MSCs remain un
omparable. Onone hand, holes in template MSCs are not ne
essarily des
riptionsof what happens in the future or in the past of an event. By �llinghole, one may add 
on
urrent events, i.e. it is possible to say withtemplate MSCs that whenever an a
tion a o

urs on pro
ess p, a
on
urrent a
tion b o

urs on pro
ess q. Clearly, this kind of formula
an not be expressed with LPOC. On the other hand, some LPOCformulae that use the until operator do not �nd their equivalent intemplate MSC.Note also that the works in [16℄,[3℄ and [9℄ rely on the existential-ly bounded nature of models to ensure de
idability of model 
he
king(that is, there is a bound b su
h that every MSC 
onsidered possessa linearization where the size of 
ommuni
ation 
hannel never ex-
eeds b). This is not suÆ
ient in our 
ase to obtain de
idability ofdiagnosis, as the PCP en
oding of se
tion 3 is existentially bounded.TheK-in
uen
ing restri
tion is then 
loser to the universal bound on
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ontents of 
ommuni
ation 
hannels in all linearizations ofMSCs is bounded by some integer b) needed to model 
he
k HMSCswith global logi
s [1℄. It might be interesting to see whether the lay-ered 
omputation restri
tion of [15℄ is suÆ
ient to make diagnosiswith LPOC formulae de
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