Logic-Based Diagnosis for Distributed Systems 1

Logic-Based Diagnosis for Distributed Systems*

Shaofa Yang'?, Loic Hélouét?> Thomas Gazagnaire®}

Y UNU-IIST, Macao

ysf@iist.unu.edu

2 INRIA Rennes, France

loic.helouet Qirisa.fr

3 Citriz Systems R&D Ltd., UK

thomas.gazagnaire@citrix.com

Abstract

We address the problem of off-line fault diagnosis for distributed sys-
tems. It consists in finding explanations for a given partial obser-
vation of abnormal behaviour, using knowledge of system dynamics.
For this, a diagnosis algorithm must decide whether there exists an
execution that is compatible with our knowledge of the system and
with the observation. We represent observations with restricted par-
tial orders which model cause-effect relations among local states, and
properties that hold at these states. We capture knowledge of sys-
tem dynamics with a temporal logic which asserts the evolution of
patterns of causal orders. We show that the corresponding diagnosis
problem is undecidable. However, if we limit explanations to dis-
tributed behaviours in which each process causally influences every
other process in a bounded manner, the restricted diagnosis problem
becomes decidable.

Keywords: Diagnosis, partial orders, logic.

1 Introduction

For safety and economical reasons, diagnosis of faults is of paramount
importance in domains such as telecommunication networks and em-
bedded systems. Diagnosis can be performed off-line or online. In
off-line diagnosis, the task is to infer missing information (unobserved

*work supported by the CREATE project of Region Bretagne.

*Work done while this author was at TRISA/INRIA Rennes, France supported
by an INRIA post-doctoral fellowship.

#Work done while this author was at ENS Cachan, antenne de Bretagne,
France.

2 Perspectives in Concurrency

events or states, faulty behaviors,...) from a partial observation of a
system, such as a log file. The observation has to be partial for two
reasons. Firstly, some state information or actions may not be di-
rectly accessible. Secondly, due to the huge size of many distributed
systems, it is simply not feasible to keep track of all state information.
In online diagnosis, a system is continuously monitored and faults are
supposed to be detected as soon as possible after their occurrence.

Traditionally fault diagnosis is performed by inductive reason-
ing, using expert heuristic rules between faults and observations.
However, such expert knowledge is difficult to obtain and easily be-
comes obsolete when a system’s configuration evolves. The so-called
model-based approach brings more applicable solution to fault diag-
nosis. In this framework, one captures knowledge of system dynamics
in some formal system model such as transition systems [17], Petri
nets [2] or message sequence charts [10]. Faults are inferred from
observation and the system model. One might be interested in de-
termining if an unobserved fault has occurred, as in [17], or in find-
ing all possible runs that may have led to the observation, as in [2].
Another objective ([8]) is to compute a summary of possible expla-
nations, that is to annotate observations with information that help
explaining what might have occurred. The additional information
can be causal relations among observed events, known local proper-
ties of states or events in the observation, and events of interest not
contained in the logged information.

One drawback of model-based diagnosis is that a complete mod-
el of the monitored system is not always available. Furthermore, it
is difficult to update a system model when a system’s configuration
changes. Often, the only knowledge available for diagnosis consist-
s of some partial properties of a system’s behaviour. Considering
this, we propose a logic-based approach to diagnosis. More precise-
ly, we capture knowledge of a system’s behaviour using formulae in
some suitable temporal or modal logics. Temporal or modal logics
enables one to specify properties of system’s dynamics in a natural
way. In many cases, updating properties of a system in the form of
logic formulae can be done easily by changing a limited number of
subformulae.

In this paper, we represent behaviours of distributed systems
with restricted partial orders which define cause-effect relations a-
mong local states. These partial orders are called partially ordered
computations. We propose a temporal logic over partially ordered
computations and call it simply the logic of partially ordered com-
putations (LPOC). The main feature of LPOC is to reason about
evolution of patterns of causal orders. We use temporal operators

Logic-Based Diagnosis for Distributed Systems 3

similar to Computation Tree Logic. The design of LPOC is motivat-
ed by the fact that, for many distributed systems such as network
protocols, properties about their executions are often available in the
form of “whenever this pattern of causal ordering occurs, some oth-
er pattern will follow in future”, where patterns are usually short
sequences of message exchanges.

We study off-line diagnosis based on LPOC. The problem is to
determine whether there exists an explanation for a given observa-
tion and a given LPOC formula ® describing a system’s dynamic
properties. An explanation is a distributed behaviour which could
have given rise to the observation and which satisfies the formula
®. We show that this problem is undecidable in general. The unde-
cidability result is mainly due to the undecidability of satisfiability
problem of LPOC. We note that the satisfiability problem of several
similar temporal logics in the literature are undecidable. These in-
clude m-LTL [15], a local temporal logic on Lamport diagrams, and
template message sequence charts [9]. However, for a given K, if we
limit explanations to so-called K-influencing distributed behaviours
in which each process causally influences every other process in a
bounded manner, then the restricted diagnosis problem is decidable
(for the given K). Furthermore, one can effectively compute a com-
pact summary of all K-influencing explanations.

In the next section, we introduce the syntax and semantics of
the logic LPOC. Section 3 defines the diagnosis problem associated
with LPOC and show that it is undecidable. Section 4 establishes
the decidability of the restricted diagnosis problem where only K-
influencing explanations are considered. We also analyze the com-
plexity of the decision algorithm. Section 5 discusses related work
and postulates some future directions. To reduce clutter, some proofs
are omitted, but can be found in an extended version in [19].

2 Logic of Partially Ordered Computations

Through the rest of the paper, we fix a finite nonempty set P of
process names, and A a finite nonempty set of atomic propositions.
We let p, g range over P.

Definition 1. A partially ordered computation (or computation for
short) over (P, A) is a tuple (S,n,<,V) where:

e S is a finite set of (local) states.
e 1 : S — P identifies the location of each state. For each p € P,
we define S, = {s € S| n(s) =p}.

4 Perspectives in Concurrency

e < C S x 8 is a partial order, called the causality relation.
Furthermore, for each p, < restricted to S, xS, is a total order.

e V: 8 — 24 is a labeling function which assigns a set of atomic
propositions to each state. We call V(s) the valuation of s.

Intuitively, a computation (also called Lamport diagram in the
literature [15]) represents the causal ordering among local states in a
distributed execution, in which states of each process are sequentially
ordered. The valuation of local state s collects the atomic proposi-
tions that hold at s. Figure 1-a) shows a computation. States are
designated by black dots with associated name s4,...,ss. Processes
P, @Q, R are represented by vertical lines, and states located on a pro-
cess line are ordered from top to bottom. Finally, valuations of states
take value in {a, b, c}, and are represented between two brackets near
the associated state. Note that we consider only finite computations,
since we address only offline diagnosis in this paper. We will say that
two computations (S,n,<,V) and (S',n',<', V') are isomorphic iff
there is a bijection f : S — S’ such that n(s) = n'(f(s)) for any s € S,
51 < 8o iff f(s1) <" f(s2) for any s1,8, € S, and V(s) = V'(f(s)) for
any s € §. We identify isomorphic computations and write W = W'
if Wand W' are isomorphic.

P Q R P R

{a, b} {b,c} {b,c}

{a} 5, ® {a}

S2 S2

{0}
{b 56 {

53 53

Figure 1: a) A computation W b) the 1-view of s3 in W

Let (S,n,<,V) be a computation, and s,s" € S. As usual, we
write s < ¢’ when s < s’ and s # s'. For each p € P, we define
L,C SxSas s<g, s iff s, €5, s <s', and there does not
exist 5" € §, with s < s < s’. That is, <, is the “immediate”
sequential ordering of states belonging to p. We let < C § x S be
the least relation such that < is the reflexive and transitive closure
of <. For each p,q € P with p # ¢, let us define <,,C S x S as
follows: s <, s" iff s € S}, s' € §;, and s < 5. We also define
L= (Uper <) UWUpgepprs Kpg)- We note that < is in fact the

Logic-Based Diagnosis for Distributed Systems 5

transitive closure of <. If s < s', we say s’ is a (causal) successor
of s, and call s a (causal) predecessor of s'. We emphasize that < is
not equal to <. Indeed, < does not necessarily capture the relations
defined by the local ordering on processes. Consider for instance
states s5 and sg in Figure 1-a: we have s; < sg, but not s5 < sg.
A state s is minimal if it has no predecessor, and maximal if it has
no successor. A causal chain is a sequence $;8, ... s, of states where
5 K5 K ... K 8.

In the sequel, we define a temporal logic of partial-order compu-
tations (called “LPOC” for short) to reason about distributed behav-
iors. It has two basic features. First, at a state s of a computation,
atomic formulae assert that a “pattern” occurs in a bounded past or
bounded future of s. Secondly, we consider a branching time frame-
work with CTL-like operators and reason along sequences of causally
ordered states.

Definition 2. Let (S,n,<,V) be a computation, and m be a natural
number. The m-view of s € S, denoted | ,,(s), is the collection of
states s' in S such that there exists a causal chain of length at most
m starting from s’ and ending at s. More precisely, |, (s) = {s" |
3s9,...8, €S,n<m and s’ = sy K 51 K ... L 8, = s}. Similarly,
the m-frontier of s, denoted by 1,,(s), is the collection of states s' in
S such that there exists a causal chain of length at most m starting
from s and ending at s'.

Figure 1-b) shows an example of m-view. Note that the 0-view
and O-frontier of a state s are both the singleton set {s}. Each
state s has at most |P| successors, one belonging to each S,. Thus,
inductively, the m-view and m-frontier of s contains at most N, =

Sl IPlE = % states. In order to reason about the “pattern”

of a computation, we also need a notion of projection.

Definition 3. Let W = (S,n,<,V) be a computation over (P, A),
and let A C A. The projection of W onto A is the computation
W' = (S8",n',<",V') where S'"={s € S| V(s)NA#0}, and o', <,
are the respective restrictions of n,< to S’ and V'(s) =V (s)NA for
every s € S'.

The atomic formulae of our logic will assert that the projection
of the computation formed from the m-view or the m-frontier of a
state is isomorphic to a given computation. We are now ready to
define the logic LPOC.

Definition 4. The set of LPOC formulae over a set of processes P
and a set of atomic propositions A, is denoted by LPOC(P,.A), and
is inductively defined as follows:

6 Perspectives in Concurrency

e For each p € P, the symbol loc, is a formula in LPOC(P, A).

e Let m be a natural number, A be a subset of A, and T = (S,n, <
, V') be a computation such that V(s) C A for every s € S. Then
YmaA(T), Tm.a(T) are formulae in LPOC (P, A).

o If o, ¢ are formulae in LPOC (P, A), then EXp, EU(p, ') are
formulae in LPOC (P, A).

o If p,¢' € LPOC(P,A), then —p and ¢V ¢' are formulae in
LPOC(P,A).

From now on, we shall refer to formulae in LPOC (P, .A) simply
as formulae. Their semantics is interpreted at local states of a com-
putation. For a computation W and a given state s of W, we write
W, s = ¢ when W satisfies ¢, which is defined inductively as follows:

e W,s k= loc, iff the location of s is p (i.e. n(s) =p),

e W,s =l ,,.4(T) iff the projection of | ,,(s) onto A is isomorphic
to T

o W,s E1.,.4(T) iff the projection of 1,,(s) onto A is isomorphic
to T

e W,s = EXyp iff there exists a state s’ in W such that s’ is a
causal successor of s and W, s’ = .

e W,s = EU(p,¢") iff there exists a causal chain s;85...5, in W
with s = s;. Further, there exists an index i in {1,2,...,n}
with W, s; = ¢, and W, s; |= ¢ for every j in {1,2,...,7 —1}.

The semantics for boolean combinations and negations of formu-
lae is as usual. We assume the standard boolean operators. We de-
fine some derived temporal operators as follows: EFp = EU(true, @),
EGyp = EU(p, p A =EXtrue), AXyp = —EX(=p), AFp = —=EG(—¢p), and
AGy = —EF—p. We can also assert the truth of an atomic proposi-

tion a at a state of a computation with ¢, = \/ (loc,A Lo (a1 (Tpa)),
peEP
where each T),, is the computation containing a singleton state of

location p and valuation {a}.

For a computation W and a LPOC formula ¢, we say that W
satisfies @, written W |= ¢, iff there exists some minimal state s,
of W such that W, s,,.,, = ¢. We say that ¢ is satisfiable iff there
exists a computation W such that W = .

For application to diagnosis, it is useful to define the notion
of a computations satisfying a collection of formulae, one for each
process. Formally, for a computation W = (S,n,<,V) and a P-
indexed family of formulae {p,},cp, we say W satisfies {p,},ep,
written W = {¢,},ep by abuse of notation, iff the following condition

Logic-Based Diagnosis for Distributed Systems 7

holds: for each p € P, S, # 0 and W,s, = ¢, where s, is the
minimum state in S, (i.e. s, < s for every s € S,). Note that

W = {pp}pep Mt W = A EU(=locy, loc, A).

pEP

We have chosen the existential until operator because it is essen-
tial in asserting properties such as “whenever some pattern 71" occurs,
some other pattern 7" will follow”. More precisely, this demands that
along every causal chain, whenever a pattern T occurs, pattern 7"
should occur later and no more pattern T' can occur again before the
point at which the pattern 7" has occurred. This kind of properties
are commonly needed in practical applications.

Let us define a simple example with LPOC. We define a formula
meaning that whenever a connection phase described by a pattern
Teonn Occurs between two processes Client and Server, then a data
transfer described by a pattern T, necessarily occurs later. This
formula can be expressed by AGy, where :

Y= (lOCC’lient/\ T27A(Tconn)) =

(EX(lOCClientAEX(EU(locClienta lOCC’lient/\ T 2,A’ (Tdata))))a where the
patterns T,,,, and Ty, are described in Figure 2,

A = {disc,noclient, client, connected}, and

A" = {DataSent, DataRecv, DataAck}.

Client Server Client Server
{disc} {dataSent}
{noclient} {DataRecv}
{client} {DataAck}
{connected} {DataAck}
Tconn Tdata

Figure 2: Two patterns

3 Diagnosis

An usual framework to perform diagnosis (see for instance [2, 10, 17])
in a distributed system is as follows. A central agent, called the diag-
noser, collects information from some processes in the system. Each
process is equipped with mechanisms that signal information to the
diagnoser. This equipment can be implemented by means of code
instrumentation, or by hardware mechanisms that raise alarms and
sends them to the diagnoser. Of course, due to the size of runs of real
systems, the diagnoser only collects a limited subset of what really

8 Perspectives in Concurrency

occurs in the system. The collected information on observed states
and causal dependencies is called an observation. From this obser-
vation and a model of the system, the diagnoser can then output
an explanation of what have been observed. This generic framework
is depicted in Figure 3: processes are represented by squares, con-
nected by communication links. Black squares symbolize the local
observation mechanisms, that send their observations to the diag-
noser, symbolized by the central ellipse.

Ly

Diagnoser ™ ___| _____

4 . -
g Diagnosis
Y - 1

P, Py

Figure 3: A diagnosis framework

Intuitively, an observation describes everything that is “record-
ed” during the execution of some prefix of a computation. We as-
sume that the monitoring mechanisms transmit “recorded” obser-
vable atomic propositions to the central diagnosis system. Only
records of the same process are guaranteed to be received by the
central diagnosis system in the order they were sent. In addition to
local observation on each process, observations contain some causal
ordering among observed states located on different processes. This
allows finest descriptions of observed behaviors, and to rule out some
explanations that might be compatible with the shuffle of local ob-
servations during diagnosis. This causal ordering can be inferred
if observations are tagged for instance with vectorial clocks [14, 6].
Nevertheless, the observation architecture and the way computations
are logged is out of the scope of this work.

Our goal is to use LPOC for diagnosis. We shall represent knowl-
edge of system dynamics by a P-indexed family {®,},cp of formulae.
We also record observation of partial execution in the form of a com-
putation. The objective of diagnosis is to find explanations, also
in the form of computations, which could have led to the observa-
tion and satisfies the P-indexed family of formulae. As there could
be many explanations, it is also desirable to compute summarative
information of the collection of explanations.

Logic-Based Diagnosis for Distributed Systems 9

To this end, we fix A,, C A the subset of observable atomic
propositions, and A,, C A the subset of ezplanatory atomic proposi-
tions. Typically, explanatory atomic propositions correspond to the
faults or state information that cannot be directly accessed. On the
other hand, observable atomic proposition indicate state information
that can be directly “recorded”, for instance, alarms and abnormal
behavior. To formulate the diagnosis problem, we can now formalize
the notions of observation and ezplanation.

Definition 5. An observation is a computation (S,n,<,V) such
that for each state s in S, V(s) C Ay. Let O = (So,n0,<0, Vo) be
an observation and W = (Sw,nw, <w, Vi) a computation. Then,
W is an explanation for O iff there exists an injective mapping f :
So — Sw such that:

(i) 5 € So, 10(s) = mw (£(5)) and Vo(s) = Vie(f(5)) N Aup.

(”) VS,SI € SO7 ZfS <o 817 then f(S) <w f(sl)'

(117) For every s in the image of f, Viy(s) N Ay # 0. Furthermore,
forany s' € Sw, if nw(s") = nw(s), s <w s and Vi (s')NA, #
(0, then s’ is also in the image of f.

Conditions) to 7i7) come from the supposed faithful and non-
lossy nature of the observation mechanism. More precisely, condition
(1) means that the location mapping should be respected by the ob-
servation mechanism, and that in explanations, only states at which
at least one observable atomic proposition holds may be “recorded”,
and hence appear in the observation. Intuitively, (the truth of) an
observable atomic proposition corresponds typically to the presence
of some alarm or observed abnormal behaviour. And the monitor-
ing mechanism could only detect the presence of observable atomic
propositions, but not their absence. We also suppose that the ob-
servation mechanisms do not produce atomic propositions that were
not observed. Hence, if no observable proposition hold at a state s
of an execution, then s is not recorded in the observation.

Condition (77) asserts that the recorded causal orderings must
originate from an actual dependence in the execution. The converse
property (recording all causal dependencies) is not demanded, since
some causal orderings in the explanation may not be “recorded”.
For generality, we do not impose any more specific condition on the
recording of causality ordering. We remark however that our result-
s could be extended easily to deal with more specific condition on
recording of causalities, which may arise from particular application
domains.

10 Perspectives in Concurrency

Condition (7i7) states that there is no loss during recording of
states: if a state of process p is recorded, then any causally preceding
states s’ of p must be recorded in case the valuation of s’ contain-
s observable atomic propositions. In other words, we assume that
the monitoring mechanism is itself free from faults and thus do not
miss any presence of observable abnormal signals. In some applica-
tion domains such as telecommunication networks, the monitoring
mechanism is also part of the observed system. In such situations,
it may be sometimes necessary to consider also the potential faults
incurred by the monitoring mechanism. However, in this paper, we
will consider that the observation mechanisms is non-lossy.

Let us illustrate the notions of observation and explanation on
the examples of Figure 4. In this example, there are two processes
“Client” and “Server”, and the observable atomic propositions con-
sist of “Reset” and “Reboot” (shown in bold in Figure 4. Both W, W’
are explanations for O in Figure 4. In W, the server glitches, reboots
itself and requests the client to reset. Upon receiving the request
from the server, the client then resets itself. In W', the server breaks
down and reboots itself after repairing, while the client resets itself
following detection of loss of connection (“LostConn”) and failure to
re-establish the connection.

Client Server

{ Reset } { Reboot }

Observation O

Client Server Client Server
{Glitch } {Breakdown}
{ Reboot } { LostConn, Retry } {Repaired}
{ ReqClientReset }
{ GotResetReq } { Reset } { Reboot }
{ SeekConn }

{ Reset }
Explanation W’

Explanation W
Figure 4: Two computations W and W', and an observation O

We emphasize that while an explanation W represents a full exe-
cution of a system, an observation induced by W, may have recorded
information from a part of W. Thus, the image of f may be a proper
subset of the states of W whose valuation contains observable atom-

Logic-Based Diagnosis for Distributed Systems 11

ic propositions. Similarly, some causal dependencies among observed
states may not have been saved during the observation process. On
the examples of Figure 4, we can notice that there is a causal de-
pendency between the states of W labeled by reboot and reset, but
that this causality does not appear in the observation O. However,
we suppose the observer is faithful, that is, it does not create wrong
states or causalities. Note that for given O and W, if the mapping
f from O to W exists, then it is necessarily unique. Thus, for each
state s € Sp, it makes sense to call Viy (f(s)) the W-valuation of s.

Definition 6. Let O be an observation, and {®,},cp be a P-index
family of formulae. W is a {®,},ep-explanation for O iff W is an
ezplanation for O and W = {®,},ep -

Now we can define the diagnosis problem associated with LPOC.

Definition 7. Let P be a set of processes, A,, and A., be two sets
of atomic propositions as before. The LPOC-diagnosis problem is
defined as follows: given an observation O = (So,n0,<o0,Vo) and a
P-indezed family of formulae {®,},ep over (P, Ay, Aex), determine
whether there ezists a {®,},ep-explanation for O.

In what follows, we will often omit the subscript p € P. The
formulae {®,} specify some knowledge about executions of the sys-
tem, for instance some faulty behaviors. The objective of diagnosis is
to figure out whether there exists an explanation for what has been
observed, and hence detect if the actual behavior of the whole sys-
tem was faulty or not. In case an explanation exists, we also want to
obtain more detailed information about the possible truth values of
propositions in A,, at each observed state. We define the (explanato-
ry) summary of O under {®,},cp as the mapping g : So — 2= such
that for every s € Sp, g(s) C A.;, and a € ¢(s) iff there exists an
explanation W for O with W |= {®,},cp and a is in the W-valuation
of s. Thus, when the answer to the diagnosis problem is positive, we
want further to compute the summary of O. Unfortunately, in the
general case, the LPOC-diagnosis problem is undecidable (and so is
the computation of summaries).

Theorem 8. The LPOC-diagnosis problem is undecidable.

Proof sketch: By a reduction from the Post Correspondence Prob-
lem (PCP), similar to that used in decision problems related to mes-
sage sequence charts [9]. The complete proof of this theorem can be
found in the extended version.

12 Perspectives in Concurrency

4 Diagnosis with K-Influencing Explanations

We have shown in previous section (Theorem 1) that the diagnosis
problem is undecidable in general. There are two usual ways to over-
come this problem. The first one is to consider a decidable fragment
of the logic. Note however, that encoding a PCP becomes possible
as soon as there is a way to describe sequences of properties located
on a given process, and to define a mapping of states on different
processes that respects the ordering. This is why in most cases very
small fragment of partial order logics become undecidable when no
restriction is imposed on the kind of model considered. Then, the
question that naturally arises is whether we can identify a subclass
of computations for which LPOC diagnosis is tractable. For this, we
identify the subclass of K-influencing computations, and show that
the LPOC diagnosis problem (and thus computing the summary) is
decidable within this class.

Definition 9. Let P be a set of processes, A, be a set of observable
atomic propositions, A., be a set of atomic explanatory propositions.
Let W = (S,n,<,V) be a computation, and p,q € P with p # q. The
causal degree of p towards q in W is the mazimum integer n € N for
which there exist sy, Sa, ..., sy, in Sy, and s}, sy, ..., s, in S, such
that:

(1) 81 < 83 < ...< 8, and s} < 85 < ... < 8.
(11) fori=1,2,...,n, s; K s}, that is, s; is a predecessor of s..

(113) s} £ Sp.

For K € N, W is K-influencing iff for any pair of processes p,q
in P with p # q, the causal degree of p towards q is at most K.

Intuitively, the causal degree of p towards ¢ is the maximal num-
ber of events that precede some event on ¢ that p can execute without
having to wait for g. The general shape of K—influencing computa-
tions is illustrated in Figure 5. We now state the main result of this
section.

Theorem 10. Given an observation O, a P-indezed family {®,},cp
of LPOC formulae, and an integer K € N, one can effectively deter-
mine whether there exists a K—influencing computation W which is
a {®,}pep-explanation for O.

An important consequence of the above theorem is that one can
effectively compute a summary of the K-influencing explanations of
O. Let O be an observation and {®,},cp a P-indexed family of

Logic-Based Diagnosis for Distributed Systems 13

Q R

Figure 5: K —influencing computations

formulae. We can slightly adapt the definition of summaries in sec-
tion 3 to K-influencing computations: the K-summary of O under
{®,},cp is the mapping g : So — 2= such that for every s in So,
9(s) C A, and a € g(s) iff there exists a K-influencing explanation
W for O with W |= {®,},cp and a is in the W-valuation of s.

Corollary 11. Given an observation O, a P-indezxed family {®,},cp
of LPOC formulae, and an integer K € N, one can effectively com-
pute the K-summary of O under {®,},cp.

Through the rest of this section, we prove Theorem 10 and
Corollary 11. We fix the integer K, the observation O and the for-
mulae {®,},cp. Recall from section 2 that we can easily construct
a single formula ® such that for any computation W, W = & iff
W = {®,},ep. In what follows, we fix ®. We will assume that the
computations used hereafter are nonempty. It will be clear from the
proof that this involves no loss of generality. We let Wy denote the
set of K-influencing computations.

The proof for Theorem 10 consists of two steps. Firstly, we show
that K-influencing computations can be identified with Mazurkiewicz
traces [5] over a suitable trace alphabet (X, 7). This way, we can i-
dentify K-influencing computations with equivalence classes of finite
sequences in >*. This encoding is in spirit the same as the of encod-
ing of universally K-bounded message sequence charts with traces in
[12]. Secondly, we construct three finite state automata Auty, Auts,
Aut o, running over linearizations of traces of (3,I). Autx checks if
an input sequence represents a computation of Wy. For a sequence o
representing a computation W, in Wy, Auts accepts o iff W, = @,
and Auto accepts o iff W, is an explanation for O. The crux is the
construction of Auty. We shall give Auty in the form of a two-way

14 Perspectives in Concurrency

alternating automaton, which can be transformed to a finite state
automaton. The basic idea is similar to [7] and the usual transla-
tion from LTL to alternating automata [18]. The new technicality
in our construction is in checking conformance with formulae of the
form |, a(T), Tm,a(T). Then, there exists a sequence in ¥* accept-
ed by Auty, Auto, Auts iff Wi contains a computation W such
that W = ® and W is an explanation for O. This then establishes
Theorem 10. For Corollary 11, we will show that for any state s of
O and any atomic proposition a € A.,, one can find a finite state
automaton Aut, , which has the following property: if a sequence o
represents a computation W, in Wy such that W, = &, and W, is
an explanation of O, Aut, , accepts o iff a is in the W,-valuation of

O. As a result, one can then effectively compute the K-summary of
O under {®,},cp.

Encoding K-influencing computations with Traces

We recall that a Mazurkiewicz trace [5] alphabet is a pair (X, I)
where 3 is a finite alphabet, and I C ¥ x ¥ is an irreflexive and
symmetric relation called the independence relation. The dependence
relation D is given by (X x X) \ I. A (finite) X-labelled poset is a
pair (E,C,), where E is a finite set, T C E x F a partial order,
and A : E — X a labeling function. As usual, we write e C €' if
eCe' and e # €. We let T C E x E denote the least relation whose
reflexive and transitive closure is equal to C. A (Mazurkiewicz) trace
over (2,1) is a X-labelled poset tr = (E,C, \) satisfying: (i) for any
e,e' € E, A(e)D(e') implies eCe’ or e'Ce; (ii) for any e, e’ € E, eCe'
implies A\(e)DA(e'). We define isomorphism of traces in the obvious
way and write tr = ¢r' if the traces tr, tr' are isomorphic.

Let [K] = {0,1,...,K — 1}. We define the alphabets I',,. =
{pre(p,i) | p € P,i € [K]}, and Ty = {suc(p,i) | p € P,i € [K]}.
Let T' = P x 20w x 2T x 24, We define ¥ as the subset of I satisfying:
() {pTe(pla il)a e 7pTe(p97 ig)}v {Su’c(pllv le)v R S’LLC(p;L, Z;L)}? A) € 2
iff p1,...,p, are distinct members of P\ {p}, and pi,...,pj}, are dis-
tinct members of P\ {p}. We now define the dependence relation
D C Y xXas: (p,PRE,SUC,A) D (p', PRE',SUC', A") iff one of
the following conditions holds:

ep=yp.

e p # p/, and for some i € [K], pre(p',i) € PRE and suc(p,i) €
sSucC'.

e p # p', and for some i € [K], suc(p’,i) € SUC and pre(p,i) €
PRE'.

Logic-Based Diagnosis for Distributed Systems 15

We set the independence relation I = ¥ x ¥ — D. Tt is trivial to
verify that (X,) is a trace alphabet. From now on, we fix the trace
alphabet (¥, 7).

Let W = (S,n,<,V) be a K-influencing computation. Let us
define the ¥-labeling of W, denoted \j;, (or simply Aw), as the fol-
lowing function from S to X: for s € S, Aw(s) = (p, PRE,SUC, A)

where:

e p=1(s).

e pre(q,i) € 'y is in PRE iff s has predecessor s’ with n(s') = ¢
(such a s’ is necessarily unique by the definition of predecessor)
and ¢ = j mod K where j is the number of states s” in S,
satisfying s” < s and that s has a predecessor of location q.

e Further, suc(g,:) € Ty, is in SUC iff s has a successor §' with
n(§') = ¢ (such a § is also unique) and ¢ = 5 mod K where j
is the number of states 5" in S, satisfying s” < s and that s"

has a successor of location q.
e A=V(s).

Note that PRE and SUC are not necessarily singletons, as a
state may have one successor (reps. predecessor) on each process. Let
us define ¢r(W) = (S, <, \w). Remark that for W € Wy, tr(W) is a
trace over (3, I). Furthermore, if W' is a K-influencing computation,
then W = W' iff tr(W) = tr(W'). Figure 6 below shows an example
of a 2-influencing computation with the associated labeling. For the
sake of clarity, the subsets of atomic propositions that are true at
each state are not explicitly given, but only described by A, ... Ay.

P q T

(p, 0, {suc(q,0)}, Ar)

(g,0, {suc(p, 0); suc(r,0)}, As)

(T) {pT ((], 0)}1 {Suc(qa O)}1 AS)

(p. 0, {suc(q, 1)}, 42) (¢, {pre(p,)1, 0; 45

(g,0, {suc(r, 1)

(p, {pre(q,0)}, 0, A;

(r, {pré(a, 1)}, 0, Ay)

Figure 6: A 2-influencing computation and its -labeling

A linearization of a trace (E,C, \) is a sequence A(e;) ... A(ey,)
where ey,...,e, are distinct members of E, E = {ey,...,e,}, and

16 Perspectives in Concurrency

for any 4,5 € {1,...,n}, e;Ce; implies ¢ < j. For any computation
W € Wk, by a X-linearization of W, we refer to a linearization of
tr(W). We denote by Lin”(W) the set of Y-linearizations of W.
Let Lin}, = Uwewy Lin™(W). Note that computations in Wk can

be uniquely constructed from sequences in Lin?{. For a non-null
sequence o in X*, let last(o) denote the last letter of o. For 0,0’ in
>*, we write 0 < o' iff 0 is a prefix of ¢'. We define the partial order
Cs. C ¥X* x ¥* via: 0Cs.0' iff 0,0 are non-null, 0 < ¢’ and there
exist o1,09,...,04, h < |X|, such that o < 0y S 09... X 0, X 0’ and
last(o) Dlast (o,) Dlast (o) . . . last(0,) Dlast (o'). For every o € Liny,
we define the computation poc(o) = (S,, 7,5, <4, V,), where:

e S, is the set of non-empty prefixes of o.

e For 7 € S,, n,(r) = p iff last(r) = (p, PRE,SUC, A) for some
PRE,SUC, A.

e <, is the restriction of Cy. to S,.

e For 7€ S,, V,(1) = A iff last(T) = (p, PRE, SUC, A) for some
p, PRE,SUC.

It is easy to verify that poc(o) is well-defined. Furthermore, for every
o € Lin}, and W = poc(c), we have W € Wy and o € Lin™(W).

Automata construction.
We can build three finite state automata Auty, Auto, Auts
which have the following properties:

e For g € ¥2*, o is accepted by Auty iff o € Lini.

e 0 € Liny is accepted by Auto iff poc(o) is a K-influencing
explanation for O.

e 0 € Liny is accepted by Auty iff poc(o) satisfies @.

It follows that a sequence o € ¥* is accepted by the product of
Auty, Auto, Aute iff poc(o) is a K-influencing {®, }-explanation for
0.

We do not detail the construction of Autx and Auto, that can
be found in the extended version of this paper [19].

Proposition 12. Let P be a set of processes, A be a set of atomic
proposition, K be an integer, and ¥ be Mazurkiewicz trace alphabet
computed from P, A and K. Then, there exists an automaton Auty
of size O(|S|X1PF) that recognizes linearizations of K-influencing
computations over P with valuations in A.

We can reuse the construction of Autyx to build Auto, the au-
tomaton that recognizes K-influencing explanations of O. At each

Logic-Based Diagnosis for Distributed Systems 17

state of this automaton, one must recall a state of Autx reached
(ie, the current K —influencing linearization explored), the part of O
that is embedded in this explanation, and some additional informa-
tion about the causalities that may appear in the future.

Proposition 13. Let O be an observation over a set of processes
P, with valuations in an alphabet A,,. Let K be an integer and
A D A,y be a set of atomic propositions. The size of Auto is at most

in O(|Aut |- 21°0- 271 (|O] - |P])* - (|P| - K + 1)¥).

Construction of Autg.

We next give the description of Alts, a two-way alternating au-
tomaton [13] that recognizes linearizations of K —influencing compu-
tations satisfying ®. This automaton can then be transformed into
a standard finite state automaton Autg.

We introduce some new atomic formulae in order to simplify the
structure of ®. Recall that for a computation W and a state s of W,
the m-view or the m-frontier of s contains at most N,, = > |P|’
states. We introduce formulae of the form | ,,(T),1 m(T), where
m € N and T is a computation containing at most N,, states. Let
W = (S,n,<,V) be a computation and s € S. Then W,s =/ ,,(T)
iff the m-view of s is isomorphic to 7. The semantics of 1,,(T) is
given similarly. We note that a formula |, 4(T) is equivalent to
Vrrer 4 m(T"), where T is the collection of computation 7" such that
T’ contains at most N, states and the projection of T” onto A is
isomorphic to T'. Similarly, we can write 1, 4(T) as a disjunction of
formulae 71,,(T") with an analogous semantics.

Let W = (S,n,<,V) be a computation and s € S. Let s’ € S
and 7 = ajas...a, be a non-null sequence in ¥*. If there exist
S1y...,8, € S such that s' = s,, s, € s,_1 € ...8 < s and
Aw(s;) = a; for i = 1,...,n, then we say s’ is a T-ancestor of s.
Recall that each state in W has at most |P| predecessors, one be-
longing to each S,. Thus, we can in fact say s’ is the T-ancestor of s.
We introduce formulae of the form | (7,7') where 7, 7' are non-null
sequences in ¥*. We define W, s =] (7, 7') iff there exist states §, '
such that § is the 7-ancestor of s, §' is the 7’-ancestor of s, and § < §'.

We argue that a formula | ,,(T) can be equivalently written as a
boolean combination of formulae of the form |(7,7"). Assume with-
out loss of generality of T' contains a maximum state $,,,,. Thus,
every state in T is the 7-ancestor of s,,,, for some 7 of length at
most the number of states of T. Hence, |,,(T) is equivalent to as-
serting for each pair of states s, s’ in T, whether |(7,7'), }(7',7), or

18 Perspectives in Concurrency

= L(r, ") A= L(7',7), where s, s" are the respectively the 7-ancestor
and 7'-ancestor of s,,4;-

Analogously, we define 7-descendants and introduce formulae
of the form 1 (7,7') where 7,7' are non-null sequences in ¥*. Tt
follows that a formula 1,,(7T) is equivalent to a boolean combination
of formulae of the form (7, 7').

With the new formulae introduced above, we can assume with-
out loss of generality that ® is formed from —, A,V and the atomic
formulae loc,, |(7,7"), 1(7,7"), EXp, EU(p, ¢'). Furthermore, nega-
tions in ® only apply to atomic formulae.

Now we are ready to describe the two-way alternating automaton
Alts. The basic elements of Altg are similar as in usual translations
of temporal logics to alternating automata (see e.g. [18]). The main
difficulty is to deal with atomic formulae of the form | (7, 7'), 1 (7, 7).

We informally recall some basics of two-way alternating automa-
ta and refer to [4, 13] for details. Let Alt be a two-way alternating
automaton. An input word is delimited on the left by a left marker
and on the right by a right marker. Initially, Alt is at the initial
state with the head at the first letter of the input word. Upon read-
ing the letter of the current head position, Alt can spawn several
copies where each copy can move the head left or right and go to a
new control state. Which combination of copies can be spawned are
pre-determined by a transition relation. A run of Alt over an input
word o is a (finite) tree, where each branch terminates upon reaching
the left or the right marker. And Alt accepts o iff there exists a run
over o such that every leaf contains an accepting state.

For clarity, we describe only informally the operations of Alts.
The exact construction of Alts can be found in the extended version.
For illustration purpose, we fix an input word o = aias...a, in
Lin’.. We write 0,1 = ¢ iff poc(0),a; ...a; = .

Let SF(®) be the set of subformulae of ® and their negations,
where ——¢ is identified with . A state z of Altg consists of a
formula ¢ in SF(®) and some alphabetic constraints. Such a state z
must verify that ¢ holds at the current head position ¢ and that the
alphabetic constraints should be satisfied subsequently.

Note that poc(o) | @ iff o, h |= ® where a,a, ... a; is a minimal
state in poc(c). Thus, at the initial state, Alty searches for position
h such that a; I a for 5 =1,...,h — 1, and upon reaching position
h, it verifies that ® holds at h.

It now suffices to explain how Alts verifies that a formula in
SF(®) holds at the current head position. We proceed inductively
from the atomic formulae of forms loc,, | (7,7'), 1(7,7") and their
negations, then to formulae of forms EX¢p, EU(p, '), and their nega-

Logic-Based Diagnosis for Distributed Systems 19

tions. We then study conjunction and disjunction of formulae.

Firstly, Alts can easily check if loc, or —loc, holds at the current
head position, simply from the letter at the head position. Next
we consider atomic formulae of the form | (7,7'), T(7,7') and their
negations. For the input sequence o, we let a; = (p;, PRE;, SUC;, A;)
for each i. Recall that poc(o) = (S,,n,, <,,V,) where S, is the set
of prefixes of 0. For s,s" € S,, we write s <, s’ iff s is a predecessor
of s’ in poc(o). Consider g,h € {1,2,...,n}, it is easy to see that
ay...a, L, ay...a, iff g < h and one of the following conditions
holds:

e p, = p,. And for each index ¢ with g < i < h, p; # p,.

e p, # p, and a, D a,. Further, there do not exist indices
Q1,09 .40, t < |X|, such that ¢ < i) <iy < ... < i <h, and
ag, D a;, D a;,...a; D ay.

For a formula | (7,7'), where 7 = bby...b,,, 7" = bib,... b ., we
note that o,¢ =, (7, 7') iff there exist indices ¢y,...,4p, £),..., 2 .,
in{{+1,£+2,...,n} such that:

0 GGy ...0p KLy pr K4 P2 Ky oo Ly Pm, Where p; = aay . .. Gy,
forv = 1,2,...,m. And a,, = b; for ¢ = 1,2,...,m. This
asserts that the T-ancestor of a;a- ... q; exists.

® 10y ...0p Ky Py Ko Py Lo oo Ky Prory Where pf = aray ... ay
for i = 1,2,...,m'. And ap = b, for i = 1,2,...,m'. This
asserts that the 7’-ancestor of a;a- ... q; exists.

® a1ay...ay, <, 0102...ap ,thatis,aias...a, Csx.aiay...0p .
This asserts that the 7-ancestor of a1as . .. a; causally precedgs
the 7'-ancestor of a,a, ... q;.

Thus, to verify that a formula | (7, 7') or its negation holds at the cur-
rent position, Alts moves to the left until it hits the left end marker
and along the way checks the existence of indices ¢y,..., 4, 0},..., 0,
satisfying the above conditions. Analogously, it is clear how Alts can
verify if a formula 1 (7, 7') or its negation holds at the current head
position.

Finally, we note that formulae of forms EXp, EU(y, ¢') and their
negation can be handled as in usual translations of temporal logics
over traces to alternating automata (e.g. [7]). This is also the case
for conjunction and disjunction of formulae. This completes the de-
scription of Altg.

It is not difficult to see that the number of states of Alts is
of complexity O(2/®! - |Z|®™) where m is the maximum length of

20 Perspectives in Concurrency

7,7' for all atomic formulae of the form 1(7,7'), |(7,7'). It follows
from [13] that Alts can be transformed to a finite state automa-
ton Auts with 2V2" states where N is the number of states of Alts.
Checking for the existence of an explanation then consists in checking
the emptiness of the intersection of Aute and Auto built in proposi-
tion 13. The proof of Theorem 10 is now completed. [

Proof of corollary 11: To prove Corollary 11, we first recall that
if W is an explanation for O, then the injective mapping from the
states of O to the states of W dictated in the definition of explanation
is unique. Thus, it is easy to see that for any state s of O and
any atomic proposition a € A.;, one can construct a finite state
automaton Aut, , which has the following property: if o a sequence
o representing a computation W, in Wy where W, = ® and W, is
an explanation of O, Aut,, accepts o iff a is in the W,-valuation
of s. Aut,, can then be easily constructed from Auto, by requiring
that transitions that add s to the subset of observed states of O are
labelled by letters with valuations that contain a. As a result, one
can then effectively compute the K-summary of O under {®,},cp,
by testing for each state s of O, each a in A,,, the non-emptiness of
the product of Auts and Aut,,. O

If the formula ¢ is such that all frontiers and views used are
at most m-frontiers or m-views, then one can determine whether
there exists a K-influencing explanation W for an observation O
with complexity O(W;.2"22"*), where:

Wy = [S[FIPF 200 21 (0] - [PI)? - (1P| K +1)%
W, = 21818224 S 1)) |3 =lm

with f(i) = - 2%+%“”(i), and NV, = %. From the defini-
tion of summaries, computing a summary for O can then be done in
O(|0| - | A®®| - Wy - 272", The proof of these complexity results is
not provided here, but can be found in the extended version of this
paper [19].

5 Related Work and Conclusion

We have proposed a diagnosis framework based on a new partial order
logic (LPOC) over partial orders (i.e. the truth of formulae is evalu-
ated at local states). Unsuprisingly, satisfiability of LPOC formulae,
and hence diagnosis are not decidable without restriction. To keep
decidability of diagnosis, a restriction called K-influence is imposed
on the models. As LPOC uses the existential until operator, for a
given K, LPOC restricted to K-influencing computations is not de-

Logic-Based Diagnosis for Distributed Systems 21

finable in the first order logic over the Mazurkiewicz traces encoding
K-influencing computations. However, it can be easily translated to
MSO formulae. An interesting work would be to look for a fragment
that is expressively complete for the first order logic over the traces
encoding K-influencing computations.

Even with the restriction to K-influencing computations, diag-
nosis is very expensive (several exponential in the size of the formula
and exponential in the size of the observed behavior). This high com-
plexity could mean that diagnosis with LPOC is unfeasible. Note
however that this complexity is in the worst cases. For instance,
the exponential in the size of the observation comes from the max-
imal number of configurations in a partial order. In practice, for
an observation with a bounded number of processes, the number of
configurations can be much slower. The other costly part of the diag-
nosis problem comes from the translation from alternating automata
to finite state automata. Again this is a worst case complexity. Note
also that the translation of LPOC formulae into conjunction of for-
mulae of the form 1 (7, 7'), | (7,7') is costly only when the pattern
considered in the formulae are large. In general, basic patterns used
in partial order languages such as message sequence charts are rather
small, and we argue that this should also be the case with LPOC for-
mulae. Some complexity gains can hence be expected by restricting
the size and the number of partial order templates considered, but
also the modalities of the formulae. Note however that most of the
modalities chosen for LPOC seem important. The simple example of
section 2 shows that the Until operator is essential to express proper-
ties of the form “when T1 occurs, T2 will occur later”. One may also
try to restrict the use of negation, that is LPOC formulae would only
be conjunctions of positive assertions on the occurrence of patterns.
Note however that the translation of an LPOC formula to a simplified
formula on causal chains uses negation when two states of a pattern
are not causally related. Hence, even in a restricted setting, negation
of some properties will have to be checked. So, the small complexity
gain that could occur may not justify the loss of expressiveness due
to a restriction on negations.

In [16], D.Peled shows that model checking TLC~ formulae on
High-level Message Sequence charts (HMSCs) is decidable. TLC™ isa
subset of TLC that only contains next and until temporal operators,
and describes the shape of causal chains in all the partial orders
generated by a HMSC. TLC ™ is clearly less expressive than LPOC.

The Propositional Dynamic Logic (PDL) for message passing
systems proposed by [3], extends dynamic LTL for traces [11]. Model
checking PDL properties over HMSCs is PSPACE complete. [15]

22 Perspectives in Concurrency

proposes a local logic LD0 and several extensions over computations,
with future and past modalities, and show that in the general case,
satisfiability is undecidable. However, these logics become decidable
when considering models of bounded size, or when computations can
be organized as successive layers of finite message exchanges. LDO0
only describes chains of causally related events occurring in the future
or in the past of a local state, while the template matching in LPOC
allows to describe a complete partial order in a bounded future or past
of a local state. LPOC is then more discriminating than LDO, and if
we restrict our models to Message Sequence Charts (a partial order
where locality of events and messages are explicitly represented), it
is also more expressive and discriminating than TLC~ and PDL.

Note also that for TLC~, PDL, or LDQ, partial orders are seen
as models of formulae, but not as elements of the logic itself. The
closest approach mixing logic and partial orders is called ” Template
Message Sequence Charts” [9]. A template MSC is an MSC that
comports some “hole” and incomplete messages. Roughly speaking,
models for a template MSC are obtained by filling the holes with new
partial orders, and matching sendings and receptions of messages.
The authors increase the power of template MSCs with pre/post con-
dition operators. The models of these formulae are MSCs. This logic
is very expressive, but satisfiability is undecidable when no bound is
assumed on the set of models considered. However, a restricted frag-
ment of the logic is proposed to model check existentially bounded
Communicating Finite State Machines. Note however that models for
template MSC formulae are MSCs, while models for LPOC formulae
are arbitrary computations. Even if we only consider LPOC formulae
over MSCs, LPOC and template MSCs remain uncomparable. On
one hand, holes in template MSCs are not necessarily descriptions
of what happens in the future or in the past of an event. By filling
hole, one may add concurrent events, i.e. it is possible to say with
template MSCs that whenever an action a occurs on process p, a
concurrent action b occurs on process q. Clearly, this kind of formula
can not be expressed with LPOC. On the other hand, some LPOC
formulae that use the until operator do not find their equivalent in
template MSC.

Note also that the works in [16],[3] and [9] rely on the existential-
ly bounded nature of models to ensure decidability of model checking
(that is, there is a bound b such that every MSC considered possess
a linearization where the size of communication channel never ex-
ceeds b). This is not sufficient in our case to obtain decidability of
diagnosis, as the PCP encoding of section 3 is existentially bounded.
The K-influencing restriction is then closer to the universal bound on

Logic-Based Diagnosis for Distributed Systems 23

MSCs (the contents of communication channels in all linearizations of
MSCs is bounded by some integer b) needed to model check HMSCs
with global logics [1]. It might be interesting to see whether the lay-
ered computation restriction of [15] is sufficient to make diagnosis
with LPOC formulae decidable.

References

[1]
[2]

[3]

[10]
[11]
[12]

[13]

[14]
[15]
[16]

[17]

(18]

[19]

RAJEEV ALUR AND MIHALIS YANNAKAKIS Model Checking of Message Se-
quence Charts. CONCUR, (1999) 114-129.

ALBERT BENVENISTE, ERIC FABRE, CLAUDE JARD, AND STEFAN HAAR.
Diagnosis of asynchronous discrete event systems, a net unfolding approach.
IEEE Transactions on Automatic Control, 48(5),(2003) 714-727.
BENEDIKT BoLLIG, DIETRICH KUSKE, AND INGMAR MEINECKE. Proposi-
tional Dynamic Logic for Message-Passing Systems. FSTTCS, (2007) 303—
315.

J.A. Brzozowskl AND E.L LEeiss. On Equations for Regular Languages,
Finite Automata, and Sequential Networks. T'C'S, 10, (1980) 19-35.
VOLKER DIEKERT AND GREGOR ROZENBERG, EDITORS. Book of Traces.
World Scientific, Singapore, (1995).

CoLIN FIDGE. Logical time in distributed computing systems. Computer,
24(8), (1991) 28-33.

PAUL GASTIN AND MADHAVAN MUKUND. An Elementary Expressively Com-
plete Temporal Logic for Mazurkiewicz Traces. ICALP, (2002) 938-949.
THOMAS GAZAGNAIRE AND Loic HELOUET. Event Correlation with Boxed
Pomsets. FORTE, (2007) 160-176.

BLAISE GENEST, MARKUS MINEA, ANCA MUSCHOLL, AND DORON PELED.
Specifying and Verifying Partial Order Properties Using Template MSCs.
FoSSaCS, (2004) 195-210.

Loic HELOUET, THOMAS GAZAGNAIRE, AND BLAISE GENEST. Diagnosis
from Scenarios. WODES, (2006) 307-312.

JESPER.G. HENRIKSEN AND P.S. THIAGARAJAN. Dynamic Linear Time Tem-
poral Logic. Ann. Pure Appl. Logic, 96(1-3), (1999) 187-207.

DieTrICH KUSKE. Regular sets of infinite message sequence charts. Informa-
tion and Computation, 187(1), (2003) 80-109.

RicHARD.E. LADNER, RICHARD.J. LIPTON, AND LARRY.J. STOCKMEY-
ER. Alternating Pushdown and Stack Automata. SIAM J. Comput., 13(1),
(1984) 135-155.

FRIEDEMANN MATTERN. On the relativistic structure of logical time in dis-
tributed systems. Parallel and Distributed Algorithms, (1989) 215-226.

B. MEENAKSHI AND RAMASWAMY RAMANUJAM. Reasoning about Layered
Message Passing Systems. VMCAI (2003) 268—282.

DoroN PELED. Specification and Verification of Message Sequence Charts.
FORTE, (2000) 139-154.

M. SAMPATH, R. SENGUPTA, S. LAFORTUNE, K. SINNAMOHIDEEN, AND D.C
TENEKETZIS. Failure diagnosis using discrete-event models. IEEE Transac-
tions on Control Systems Technology, 4(2), (1996) 105-124.

MOSHE.Y VARDI. An Automata-Theoretic Approach to Linear Temporal
Logic. Banff Higher Order Workshop, (1995) 238-266.

SHAOFA YANG, Loic HELOUET, AND THOMAS GAZAGNAIRE. Logic based
diagnosis for distributed systems. INRIA Technical report, (2009).

