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Abstract host's hardware. They have been very popular architecture since
We describe in this paper our implementation of the Xenstored ser-t)?e CE/CM‘QT‘ (Cr_easy 1981), Idevelgp_ed at (IjB';A in the 1?605" Thhe
vice which is part of the XN architecture. Xenstored maintains a EN Nypervisor IS very popuiar an |és used, for example, by the

hierarchical and transactional database, used for storing and manZ#\Mmazon Elastic Compute Cloud projeathich allows customers

aging configuration values. to rent computers on which they can run their own applications.
We demonstrate in this paper that mixing functional data-structures irtual hi h | "
together with reference cell comparison, which is a limited form of N @ virtual architecture, each guest runs securely partitioned

pointer comparison, is: (i) safe; and (ii) efficient. This demonstra- T0m others in a virtualized environment. Using a technique called
tion is based, first, on an axiomatization of operations on the tree- Para-virtualization, which involves modifying processors’ admin-
like structure we used to represent the Xenstored database. FronjStrative instructions into calls into the hypervisor, processors’ ef-
this axiomatization, we then derive an efficient algorithm for co- liciencies are close to native performance. When operating system
alescing concurrent transactions modifying that structure. Finally, modifications are not practical or impossible, thenxhypervisor

we experimentally compare the performance of our implementa- leverages the use of special instructions, called VMM instructions.
tion, that we called OXenstored, and tBémplementation of the These instructions give the ability to run the guest unmodified but
Xenstored service distributed with theeX hypervisor sources: the ~ (@Pping all administrative operations securely.

results show that OXenstored is much more efficient tharCits . . . ..
counterpart. In the XEN architecture, a para-virtualized privileged guest

As a direct result of this work, OXenstored will be included in fu- Calleéd the “control domain” is in charge of all the /O needs of the
ture releases of KNSERVER, the virtualization product distributed ~ Other guests. Consequently, all virtual guests’ devices (disks, net-

by Citrix Systems, where it will replace the currentimplementation WOrk interfaces) have to be handled at this level too. For example,
of the Xenstored service. each guest’s virtual disk is associated with at least a process in the

control domain. Subsequently, when a new guest starts, it is nec-
Categories and Subject Descriptors H.2.4 [Database Manage- essary that the corresponding processes have already been started

meni: Systems — Transaction processing; D.1Programming in the control domain and configured correctly. In theN<archi-
Techniquek Applicative (Functional) Programming; D.3.Pjo- tecture, it is thus necessary to have a specific service in the control
gramming Languade Language Constructs and Features — Data domain to exchange control and configuration data between guests.
types and structures This service is called Xenstored and can be seen as a tuple space

system, providing concurrent-safe access to a key-value association
database. This service has originally been implement&dand is
distributed with the XN hypervisor sources. We will refer to it as
CXenstored.

General Terms  Algorithms, Design, Performance

Keywords Databases, Transactions, Concurrency, Prefix Trees

1. Introduction This paper describes another implementation of the Xensto-
XEN (Barham et al. 2003) is an open-source type 1 hypervisor, pro- red requirements, done usi@pjective Cam(Leroy et al. 1996),
viding the ability to run multiple operating systems, called guests, and we will refer to it as OXenstored. This new implementation
concurrently on a single physical processor. Type 1 (or native;bar USes functional data-structures as well as reference cell compar-
metal) hypervisors are software systems that run directly on the ison (Pitts and Stark 1993; Claessen and Sands 1999), which is
a limited form of pointer comparison. OXenstored is a fifth of
the size of CXenstored (around 2000 lines of code) and signifi-
cantly improves the performance in several respects: particularly,
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as a result of this work, OXenstored will replace CXenstored in Simple database operationThe clients of the Xenstored service

future releases of KNSERVER, the virtualization product com-
mercialized by Citrix Systemiswhich is built on top of the %N
hypervisor. OXenstored sources can be found on:

(which are either guests or are components running inside the
control domain) have only a small set of atomic operations to
set and get the contents from the database:

http://xenbits.xen.org/ext/xen-ocaml-tools.hg e write: create or modify a new path:
Consequently, we believe that these arguments demonstrate that ~ ® read: get the value associated with a path;

(i) functional (and thus immutable) data-structures are the most in- e mkdir: create a new node in the database:

tuitive and simple candidates for manipulating tree-like structured .

data; and (ii) reference cell comparisons can be used in a very safe ~ ® getperm: get the permissions of a node;

way to obtain great performance as well as proven consistency. e setperm: set the permissions of a node.

This paper is organized as follows: Section 2 gives a high-level Notification The clients of the Xenstored service can ask to be
overview of the Xenstored service’s architecture, as well as an ~ notified of changes in a node. When a node is changed or
example of how it interacts with the B framework. Section 3 created, all the guests watching this node or a parent of this
gives an informal explanation of the algorithm used by OXensto- node will p_e notified asynchronously that a specific path has
red. Then, Section 4 formalizes the functional data-structure used ~ P€en modified.
in OXenstored for modeling the database and section 5 derives thePermissionsEach node has its own permissions. A permission is
notion of a transaction in this context. Then, we explain in Section 6 made up of an owner, which has all privileges on the node, and
how, unlike CXenstored, OXenstored is able to coalesce concurrent  an access control list which specifies who is allowed to access
transactions which are affecting distinct parts of the database. We  or modify the node.

conduct some preriments [n S{ecyion 7 to validaj[e our apprgach Quotas Unprivileged guests can be limited in the number of nodes
and show that, indeed, the simplistic way of handling transactions they are authorized to create. This permits the Xenstored ser-

of CXenstored can makes the system live-lock in a very common vice's memory usage to stay at reasonable levels and this pro-

situation (s_tartlng a lot of guests), as oppo_sed to OXenstored. Fi- tects the control domain memory from malicious guests.
nally, Section 8 compares our approach with other work focused

on transactional databases and Section 9 discusses the results giveFansactions The clients of the Xenstored service have the abil-
in this paper. ity to run a set of multiple operations modifying/reading the
database in an atomic fashion. From the start to the end of the
transaction, the Xenstored service will ensure that the database
stays consistent. If a transaction cannot be made consistent, then
the Xenstored service will reply to the client that the transaction
needs to be retried. A client can have multiple opened transac-
tion at the same time, and thus each transaction needs to be
identified by a unique transaction ID — whenever a client sends
arequest to the Xenstored service, it will associate to its request
such a transaction ID. A transaction ID of 0 means that the re-
quest is not associated to a transaction and will be executed
directly.

2. Xenstored Design and Use-Case

We give in Section 2.1 an overview of the design of the Xenstored
service and, in Section 2.2, an example use-case of how it interacts
with the XEN hypervisor.

2.1 Overview of the Xenstored Design

The Xenstored service is a single-threaded daemon, running in the
control domain. It is the central point of communication, as guests
communicate to each others using it. Basically, it is a file-system-
like database, where control data is hierarchically organized.

These requirements have originally been implemented in CXen-
stored. However, in CXenstored, transactions are handled in a sim-
plistic way. In a set of concurrent transactions, only one would be

There is two different ways a client can connect and communi- able to successfully complete, all the other transactions would have
cate with the Xenstored service: to retry from the beginning. This way of handling multiple con-

current transactions makes the mechanism really simple to provide
e First, using the ring buffers. These are two circular buffers consistency, however it also adversely affects the performance of

stored inside in the guests’ memory: one for sending request the system: when the number of concurrent transactions is high, a

to the Xenstored service and one for reading its replies. slow or long transaction will be disadvantaged in an environment

e Second, using the Unix sockets. These are accessible only forwhen only the first to finish can be completed successfully. In case
processes running inside the control domain. Clients of the @ client of the Xenstored service is doing a small and fast transac-

ations to access to the database. other clients will never be able to complete.

From the client point of view, the Xenstored service offers a hi- 2.2 Example Use-Case

erarchical key-value association database which has the following In this section we give a small example which describes the se-

properties: quence of steps involved when starting a new guest. This sequence

of steps involves three different clients of the Xenstored service:

Structured key databaseContents in the database are structured
into nodes which are addressed by Unix filesystem-style paths. e \ ; - .
For example, theth guest stores its virtual-disk configuration domain is able to set up the virtual disk drivers and the virtual
under the path/local/domain/i/device/vbd/ in a XEN- network drivers inside the control domain, for the new guests.
based system. Each path corresponds to a node in the databasee The new Guest Kernel (GK). When running, the kernel of the
and it can store a value even if it has some children. guest will try to connect to its virtual disk and network drivers

which should be running inside and exported by the control

domain.

e The Control domain’s Kernel (CK). The kernel of the control

2 Citrix Systemshttp:/ /www.citrix.com.



e The management Tool-Stack (TS). It is running inside the con- T, the prefix tree described in this figure, is the state of the database
trol domain and it receives direct orders from the user. Partic- just before committing the transaction. When committifg, (7%,
ularly, when a user wants to start a specific guest, the manage-b) to T', the system observes first tHatand7”s roots are not in the
ment tool-stack is in charge of initiating the guest start protocol. same memory location. However, the subtrekiat7; is the same

. ) . as the subtree &tin 7'. Thus, the new database state becomes the

_ Starting a guest can be summarized as follows. Lines are pre-prefiy tree7” in figure 1, which is the substitution of the subtree at

fixed with the name of client doing the action (ie. (CK), (GK) or i 7 py the subtree dtin 7». In the next sections, we formalize

_(TS)). Almo_st all c_)f these steps should be done_atomi_cally (ie. us- that algorithm and demonstrate that it works correctly.
ing transactions) in order to not pollute the configuration database

in case one of the three clients fails.

(TS) The management tool-stack queries tlXypervisor to cre-
ate a fresh guest. At this point, the guest is paused. Teehy-
pervisor responds to the management tool-stack by givitig
ID of the created guest. Then, the management tool-stack cre-
ates a collection of pathSlocal/domain/i/devices/. .. in
the database.

(TS) The management tool-stack notifies the control domain’s kernel
(whose guest ID i) that it wants to set up some kernel
devices by atomically writing a collection of configuration keys
in /local/domain/0/backend/. . ..

(CK) The control domain’s kernel is watching for modifications
on the path/local/domain/0/backend, and thus is noti-
fied by the Xenstored service that someone wants it to con-
figure new drivers inside the control domain. Once this is Figure 1. An example of how the algorithm implemented by
done, the control domain’s kernels write some special values in OXenstored works.

/local/domain/0/backend to notify the management tool-
stack that the devices are ready.

(TS) The management tool-stack is notified that the devices are ready4' Database Representation
inside the control domain. It can now ask theXhypervisor In this section we introduce the data structures we decided to use for
to really start the guest. internally representing the OXenstored database, name |yréfie
trees or simplytries (Fredkin 1960), which are efficient structures
for representing dictionaries. We only consider functional tries, ie.
data-structures whose states are not mutable: an update operation
on these structures creates a new structure and tries to share as
much data as possible with the previous one. We first give in
Section 4.1 some general definitions and properties of tries and we
- . explain in Section 4.2 the more precise assumptions and choices
3. Informal Description of the Algorithm we made for implementing a trie library i@bjective Camlthis

Basically, the database of OXenstored is modeled as an immutableléads to an axiomatization of the trie data-structure library on which
prefix tree (Okasaki 1999). Each transaction is associated with athe following sections can rely on to prove the correctness of our
triplet (11, T3, p), whereT? is the root of the database just before transaction-coalescing algorithm.

the transaction start§y is the current local copy of the database
with all updates made by the transaction up to that point in time,
p is the path to the node furthest from the rootZof whose sub- First, let us fix a finite seiC of keysand let us consider the free
tree contains all the updates made by the transaction up to thatmonoid KC*, ie. the set of string over alphabkt, defined as the
point. The transaction updat&s by substitution and copying all infinite set of (possibly empty) key sequendgs ™ and the

the nodes from the root d¢f to the node where the substitution  composition law, having the empty sequencas neutral element
takes place. At the end of the transaction, the system tries to com-and for whichuv = a1 ...anb1...by if u = a1...a, and

mit. At this point, the system checks1f; is still the root of the v = by...bm; andue = eu = u. Elements ofC* are called
current database. If it is, it just commits by settiig to be the paths. A prefix ofu = a1 ... a, is eithere, or a pathu . . . a; with
current database. If it is not, it checks if the subtree at T} is k € {1...n}. A strict prefix ofu is eithere or a patha; ... ax
same as the subtree @in the current database. If it is, it means with £ < n. Moreover, the size of a path, denoted byu|, is

that no-one has yet touched the nodes touched by the transactionthe number of elements contained in the sequence; more formally,
so it just commits by substituting the subtreepah the database  |ai...an| = n andle| = 0. In OXenstored, a path is represented
by the subtree gb in 75. Otherwise, someone must have touched as a slash-separated list of names/lscal/domain/0/device.

the nodes touched by the transaction, and therefore the transactiomhis path can be understood as the sequence of kaysusaa,

(GK) When the guest kernel is booting, it will read the configuration
values put in/local/domain/i/devices/... by the man-
agement tool-stack. Using these data, it will be able to config-
ure the data-path of its devices correctly, through the drivers of
the control domain’s kernel.

4.1 Basic Materials

must abort to ensure serialisability &tler and Reuter 1983). wherea; = local, as = domain, as = 0 andas = device.

Let us now consider a small example to see how this algorithm Second, let us fix a finite st of values A trie is a structure
works. Let us consider an initial database associating£) &to which partially maps paths to values. Thus, it can also be consid-
a and 4 tob, and a transaction trying to associate 7btoThis ered as a total functioff : £* — (VU {_L}), wherel is a special
transaction is represented by the tripl&t (7%, b), whereT; and symbol introduced to denote the fact that a path has no associated

T, are two prefix trees sharing in memory the same node associatedvalue.
to the keya, as described in Figure 1. Moreover, let us assume that



Finally, the singleton trie associating a valuavith the paths
and_L to anything else is denoted Ky:}. The infinite collection of
tries is denoted b{['(KC, V) or simply byT.

Tree Representation In practice, this hierarchical mapping can
be used to optimize space utilization of a trie: indeed, it can then

be implemented as a finite tree whose nodes and edges are labelle

by values and keys respectively. Such a ffeean be decomposed
into a structurgz, {a;, T; }iez), wherex € V, 7 = {1...n} and
foranyi € Z, a; € K andT; € T such that:

e T(e) =u;
e Foranyu = bv € K* suchthab € K, v € K£*, we have:

= If T'(b) = L then there is n@ such that; = b;
= OtherwiseT'(u) = T;(v) wherei is such thati; = b.

Thus, for any path: in £* the value associated within 7" is
eitherT'(u) € V if there is a node associated with the patin
the tree representing, or 7'(u) = L otherwise. Figure 3 shows
such a triel": paths/vm/0, /vm/1 and/vm/2 share the same prefix
/vm and thus the valu€®(/vm/0), T'(/vm/1) andT'(/vm/2) are
stored in the same subtree/aim in 7T'. For this trie, we also have
T(/vm/3) = L.

We are now ready to define basic operations on tries. We con-
sider in this paper two operations, namely the substitution and re-
striction.

Substitution  First, thesubstitutionoperation consists to replace
any subtree of the original trie by another subtree. More formally,
the trie substitution can be defined as follows: given two tiies
andT5 in T and a pathu in £*, the substitution off; on path

u by T», denoted byT[u/T3], is @ new trie such that, for any
pathv andw in K£*, we haveT[u/T>|(vw) = T2(w) and if u

is not a prefix ofv, thenT [u/T»](v) = T (v). We can also extend
these notations to defiri€[u/z] whereT" € T can be decomposed
into (y,{a;, T3}), w € K* andxz € V, to be the substitution

Tlu/(z,{a:, Ti})].

Restriction ~ Second, theestriction operation selects a specific
subtree in the initial tree: given a tri€ in T and a path in £,
therestrictionof T to u, denoted byl'|u, is a trie such that, for any
pathv in £*, (T'|u)(v) = T'(uwv). The trieT'|u is also called a sub-
trie of T'. The restriction operation might also be seen aswial
applicationon tries. Figure 3 shows an example of trie restrictions:
the trie whose nodes are labeledihyl, e and f is a sub-trie ofT’,
obtained its restriction to the pafhm, ie. it is7'|/vm.

4.2 Axiomatization using Reference Cell Equality

When the question of implementing the substitution and restric-
tion operators defined above in an efficient trie library arises, the
programmer still has a lot of freedom: the given definitions do
not explain directly how to express the substitution and restriction
in terms of tree operations. Indeed, the above definitions hold for

be used to observe value sharing: two values are shared if they have
the same location, that is, if they are physically equal.

In light of this discussion, Figure 2 redefines the substitution and
the restriction in order to enforce the sharing of values: rules (E1)
nd (E2) focus on the behavior of physical equality only; rules (S1),
2), (S3) and (S4) focus on the substitution operator and its inter-
actions with the restriction operator; finally, rules (R1), (R2) and
(R3) focus on the restriction operator only. These definitions can
be considered as axioms that any implementation of tries should
satisfy and for which any formal reasoning can rely on.

(El) VvVIreT, T=T
(EZ) VTl, To €T anqu, Ve K*,
if T1|u = T2|’U, thenT1 (u) =15 (U)
(S1) VT1,Ts € TandVu,v € K*, T1[u/Ts]|uv = To|v
(S2) VT1,T: € TandVu,v € K*, Th[uv/Ts]|lu Z Ti|u
(S3) VT, T» € TandVu,v € K, if:
> is not a prefix ofv and
> v is not a prefix ofu
thenT1 [U/TQ“U =T \u
(84) V’Tl7 Ty €T anqu, v E IC*,
if v # ¢, thenT[uv/T>](u) = T1(u)
(R1) VI'eT,Tle=T
(R2) VT e TandVu,v € K*, T|ulv = T'|uv
(R3) VT1,T> € Tandvu € K*,
if Ty = Ts, thenT1|u = T2|u

Figure 2. Axiomatization of the reference cell equality on tries,
with respect to substitution and restriction operations.

Physical Equality More informally, first of all, the two first rules

are related to the reference cell equality behavior only. Rule (E1)
states that a given symbol always physically represents the same
trie and rule (E2) states that reference cell equality implies usual
structural equality: if the reference cells of two tries are identical,
then they also associate the same values to the same keys.

Substitution Second, the next four rules are related to the sub-
stitution operator and its interactions with the restriction one. Rule
(S1) states that sub-tries of a substituted trie are physically equiv-
alent to sub-tries of the newly inserted trie. Rule (S2) states that
nodes which are on the path of the substitution are never physi-

path/value associations only and nothing is said about the location .1y equivalent to the respective nodes in the initial trie: they cor-

of these values. In particular, nothing is specified about subtree ognond to newly allocated reference cells. Rule (S3) states that
sharing. However, every modern compiler of functional languages, n,des which are not related to the substitution are not modified, ie.
such asObjective Cami(Leroy et al. 1996) or Scheme (Serrano g pgtitution is a local operation which enforces node sharing be-
2000), enforces that multiple copies of an immutable Structures yeen tries produced by substitution. Finally, rule (S4) states that

share the same location in memory. is possible to design a trie li- o\en though (S2) states that nodes which are on the path are newly
brary which enforces the sharing of subtrees as much as possiblegjocated, the value they contain is preserved and is still equal to
In order to define more formally the notion of sharing, teéer- the value of the initial trie.

ence cell equalityPitts and Stark 1993; Claessen and Sands 1999),

denoted by=, has been introduced. This equality, also known as Restriction Finally, the last rules are related to the restriction

physical equalityis a limited form of pointer equality. It compares  operator. Rule (R1) states that the restriction of any trie to an
the location of values instead of the values themselves and thus carempty path is the trie itself. Rule (R2) states that it is (physically)



equivalent to restrict a trie twice with two given path that to restrict Definition 5.1 (transaction) A transaction is a sequence of substi-
a trie by the composition of these two paths. Finally, rule (R3) states tutions. That is, a transactios belongs to(K* x T)*, ie. either
that if two tries are physically equal, then their restriction to the o is the empty sequeneeor o = [u1/T1]... [un/T%], where for
same path are also physically equal. anyi € {1...n},u; € K*andT; € T.

Tree Representation The tree representation introduced in Sec-  Such a sequence can be applied to an initialfrie T in order

tion 4.1 can be then reformulated using the axioms of Figure 2 to obtain a new tri&” € T, which is denoted by" = T". This

to be the following: a tred’ can be decomposed into a structure application consists of sequential application of each substitution
(x,{ai, T;}icz), whereZ = {1...n}, z € V and for anyi € Z, [wi /T3] for i from 1 ton, that is:

a; € K andT; € T such that: T — (. (Tlur/T1)) .. ) [un/To))

* I'(e) =z For example, let us consider the following transaction:
e There is nau; such thatl'(a;) = L; 1. Writez € V in the pathu; € K*:
* Tla; =T;. 2. Read the value associated with the pathe K£*;
In this case, rule (R2) ensures that for ane K*, T|a;u = 3. Writey € V in the pathus € IC*.
T|a;|u, that is T|a;u = T;|u. Finally rule (E2) ensures that

Let us have the tri§" € T representing the current state of the

T(aiu) = Ti(u). database. Then the above transaction can be defined as:

~ For example, Figure 3 gives the graphical representation of a o = [u1/(Th|u1)][uz/(T2luz)|[us/(T3|us)]
trie 7', which can be decomposed as follows: where Ty is T[ui /x], Ty is Ti[uz/Ti(uz)] and Ts is To[us /y].
(a, {(vm, (b, {(0, (d, D)), (1, (e, D)), (2, {f,0))}), (vss, (c,0))}) Finally, 7’, the updated state of the database is suchth&t 7"

Furthermore, the Xenstored requirements are that transactions
can proceed concurrently. That is, multiple connections to the
database can be opened and all of them can start independent trans-
actions. As we consider immutable data-structures, this is not a
problem: for each transaction started, the initial database is copied
efficiently (as it is sufficient to copy only the location of the trie
root, which is done inO(1)) and then modifications done by a
transaction are applied directly to their own copy of the initial
database.

However, ending (or “committing”) a transaction is more com-
plex. Indeed, the initial database might have been modified, since
concurrent transactions or non-transactional events may have up-

dated its state. It is thus necessary to carefully design what happens
Figure 3. Example of a tree representation. when a transaction ends.

In this Figure, the values associated with the patts and First of all, Figure 4 describes the general algorithm which one
/vm/1 areb ande respectively and’|vm designates the sub-tree  has to solve when committing a transaction.
whose root is labeled by,

COMMIT ALGORITHM
5. Transactions

We stated that the Xenstored database can be represented as an im- nput:
mutable trie; this database can then be updated using the trie sub- o AtrieTy € T
stitution operator as follows: if the tri€ € T is the current state of (the initial database state)
the database, then replacing the value associateduvithlC* by ¢ A modification sequence; € (K* x T)*
x €V is done by replacing the current state of the database by the (the transaction)
trie T'[u/z]. However, Xenstored is @ansactionaldatabase. That ¢ A modification sequence; € (K* x T)*
is, itis possible to ask for any sequences of access and modification (the concurrent modifications)
to be done atomically.
Output:

First of all, in order to simplify the following definitions and re-
sults, we consider any reading operation as an identity substitution:
for any trie7"in T and pathu in K*, getting7'(u) does not modify
T but when considering sequences of read/update operations it is
necessary to remember thathad been read. So in this case, we
write T'[u/(T|u)] as rule (S2) of Figure 2 states that in this case
T # T[u/(T|u)]. However, it is possible to extend the definitions
and results we present in this paper to reading operations which do Figure 4. The general commit algorithm.
not update the database state.

¢ A modification sequence, € (K* x T)*
(the consistent merging ef, and o)

e Avaluer € {abort, commit}
(the result of the merging)

Figure 5 illustrates this situation. In this figure, the ffieis the
We can now define transactions: initial state of the database, ie. its state just before the transaction



starts; the trid?; is the state of the database copy associated with the
transaction, ie. is obtained by applying the transaciipto 77 ; the

trie T» is the state of the database which might have been updated
since the beginning of the transactian (is empty if nothing has
been executed concurrently with); furthermore, the trids is the
state of the database after the modifications caused hgve been
taken into account to updatg. accordingly; finally, the dashed
lines betweerT; andT5 illustrates that this process is asymmetric:
the T; tries, fori € {1, 2,3}, are associated with visible states of
the database, &5, is an internal copy which carry modification
information only. Thus, in case it is not possible to mefgeavith

T, it is safe to completely discard the changes introduceé by
that is to returnro = ¢ andr = abort, to obtainTs = T%.

Ty
o RINN
/ \\\
———————— Yo— —— >
T TS 02 T;

Figure 5. Relationship between tries used in the commit algo-
rithm. Time goes from left to right.

Thus, there exist very simple algorithms which are able to merge
changes introduced by transactions into the visible database state
the first one is the one which never commits anything, that is which
always returngr, = ¢ andr = abort. This behavior is correct,
however it is not very useful in practice. Furthermore, CXenstored
implements an algorithm which commits the changes orily iias

not been updated since the transaction has been started, ie. if and

only if 71 = T». Otherwise, the transaction is aborted and retried
after a short delay from the beginning. The hope is that nobody
will update the database concurrently this time. In this cases

very simple to compute, as it is exactfy when the transaction

is committed and’» otherwise. In practice, this simple algorithm

is sufficient when transactions do not occur too often and it was
implemented successfully by CXenstored. However, experiments
show that in cases where the system is under load, this simple al-
gorithm doesn’t work any more as the transaction abort-and-retry

6. Transaction Coalescing

In the previous section, we defined transactions in terms of se-
quences of trie modifications. We explain in this section how to
merge these transactions with the main state of the database. In
order to properly explain how the coalescing algorithm we im-
plemented in OXenstored works, we first introduce in Section 6.1
some basic definitions useful for dealing with trie modifications. In
Section 6.2, we explain how optimizing a part of the coalescing al-
gorithm, by incrementally updating what we will call the modifica-
tion prefix of the transaction. Finally, we give the main OXenstored
algorithm in Section 6.3 as well as its complexity in Section 6.4.

6.1 Main Results

The first of these definitions is about comparing the modifications
done on two tries. More precisely, it is about locating the longest
path which address sub-tries that are not physically equal in the
two given tries. This longest path is called tmedification prefix
and can be more formally defined as the following:

Definition 6.1 (modification prefix) Let7T; andT; be two tries.
Themodification prefixof 7} and T}, denoted byr(74,7;), is an
elements in ({T} U K*) such that:

o If Th =T, thenu=T;
e Otherwiseyu is the longest path such that, for anye £*:
= If v is a strict prefix ofu, thenT (v) = T3 (v);
= If v is a prefix ofu, thenT |v # T¢|v;
= If Th|v # T;|v then eitheru is a prefix ofv or v is a prefix
of .

Hence,n(T1,T;) is the longest path such th@}|x (71, 7}) is
not a sub-trie ofl} (and conversely, it the longest path such that
T1|7(T1,Ty) is not a sub-trie off;). Moreover, let us remark that
in caseTi(e) # Ti(e), thenw(T1,Ty) = &, as there is no strict
prefix of ¢ and any path has as prefix; moreover (E2) and (R1)
state thatl’ (¢) # Ti(e) implies thatly # T;. Furthermore, let
us consider the trid" of Figure 5 and let us consider a new trie
T obtained by applying the transactigw /z|[uw/y] to T', where

mechanism live-locks (see Section 7). Thus we designed a better® ¥ € V. In this case, one can check thal’, 7t ) is exactlyu.

algorithm, able tanerge (or coalesce) concurrent transactiamsl
implemented it in OXenstored.

Regarding the the context of utilization of Xenstored, it is im-
portant to remark that transactions are localized and are closely

The second of these definitions is about merging tries while
enforcing a sub-trie sharing policy as much as possible. In order
to understand the intuition of this definition, it is useful to consider
the diagram shown in Figure 5. However, the following definition

related to the hierarchical structure of the database. Indeed, eacHs more general and holds for any 3-tuple of tries:

guest has its own configuration values and the transactions it will
create will access and modify only these values (and for security
reasons, we do not want it to access or modify configuration values
of other guests). For guests whose 1D ikese configuration values
are stored in specific sub-tries ffocal/domain/i. Then access-

ing information about disk or network configuration can be done
in accessing only the sub-triegdevice/vbd and. /device/vif
respectively: it is then not necessary to block other transactions
accessing different sub-tries to commit. In the following, we use
that remark to coalesce concurrent transactions accessing distinc
sub-tries of the database.

However, it is important to remember that we are still in a
transactional model, that is some transactions will still eventually

Definition 6.2 (coalescing trie) Let Ty, T> and T; be three tries.
The trieTs is a coalescing trieof T, and T3, relative toT1, if, for
any pathv in K*, it satisfies the following conditions:

1. f Ti|v = Ty|v, thenTs|v = Ta|v;

2. If v is not a strict prefix ofr(71,7:) and T |v = Ta|v, then
T3|U = Tt|vi

3. In all cases, eithe¥s(v) = T:(v) or T3(v) = Ta(v).

t  We are now ready to introduce the main result of this paper.
The following theorem states how to compute the coalescing trie
of three tries organized as in the diagram of Figure 5, ie. with an
initial trie 71 representing the initial state of the database, from
which two distinct modification sequences lead to the two ffies

fail. So, there are still some corner-cases when, under load, the(the database’s current state) ahdthe local state associated with
system will live-lock. However, in practice, Xenstored transactions the current transaction). Basically, in the majority of cases, it is
often have a very specific shape (they are localized on some sub-sufficient to substitute the database’s current state by the sub-trie
tries) and thus the algorithm we give in the next section corrects of 7} addressed by the modification prefixBf andT;. However,

this behavior and leads to more stable performance. this theorem is not complete, that is there are some cases where



building this coalesced trie is not possible. In this case, we can
simply considerT; as a trie related to a transaction afigas the

current state of the database, and as already discussed, in practice it

is acceptable to discard the transaction Trieand let the database
client retry the sequence of modifications.

Theorem 6.3(coalescing tries) Let Ty, 7> and T; be three tries
ando; be atransaction such that, =% T;. If #(T1,7;) # T and
T\|w(Th,T;) = To|n(T1,T:), then the coalescing trie df; and
Ty, relative toTy, is:

Ty [n(Ty, Ty) / (Ti|w(Th, Ty))]

Proof. Let us fixu = «(T1,T:). We assume thai # T and
thus we can fixl’s to beT>[u/(T:|u)]. Now, we want to check that
the three assertions of Definition 6.2 holds Tor.

Before starting the core of the proof, let us show a useful result.
From the definition ofl3, we have:

Tslu = Tafu/(Ti[u)][u (using (R3)
= (Ti|u)le (using (S1)
= Tilu (using (R2)

Thus, we can fix, within the scope of this proof, the following as-
sumptions:

(ALl) T3 =Tou/(Ti|u)]
(AZ) T1|’LL = T2|u
(A3)  Tslu=Tilu

We are now ready to prove Theorem 63w are inC*.

1. Following the structure of Definition 6.2, we first need to prove
thatT}|v = Ti|v implies thatTs|v = T:|v. To do this, let us
consider the following three possible cases:u(a a prefix of
u; (b) u is a prefix ofv and (c) neithew. is a prefix ofv norv is
a prefix ofu.

@) Ifu =ow:
Tilv=Tiv = (Tilv)|lw= (Ti|v)|lw (using (R3)
= Tilu=Ti|u (using (R2)
However, asu is a valid prefix ofu, Definition 6.1 states
thatT|u # T |u. Contradiction.
(b) If v = ww:
Using (A1), we haves = Tx[u/(T:|u)]. Then, we have:

Tslv = Telu/(Ti|lw)]luw (using (R3)
= (Ti|ju)|w (using (S1)
= Tiv (using (R2)

Thus,T1|v = Ti|v implies thatTi |v = Ts|v.
Then, let us develop (A2):
Tilu=Telu = (Ti|u)|w= (Tz2|u)|w
= T1|’U = T2|7J
Thus,T1|v = T;|v implies thatTs|v = Ts|v.

(using (R3)
(using (R2)

(c) If neitheru is a prefix ofv norv is a prefix ofu:
Let us start from (A1):
Tslv Tolu/(Ti|u)]|v
T2|’U

(using (A1)
(using (S3)

Thus, we showed that, in every ca8g|v = T:|v implies that
T3|U = T2 "U.

. Second, let us prove thatifis not a prefix ofu and7i|v =
T>|v, thenTs|v = T;|v. To do this, let us consider the following
two possible cases: (a)is a prefix ofv and (b) neithemw is a
prefix of v norv is a prefix ofu.

(@) Ifv = uw:
Let us start from (A3):
Tslu=Tu = (T3lu)lw = (T¢|u)|w (using (R3)
= Talv="Tv (using (R2)
(b) If neitherw is a prefix ofv norv is a prefix ofu:
Using Definition 6.1, we havé |v = Ti|v.
Then, we start from (A1) to obtain:

Tslv = Teu/(Ti|u)]lv  (using (R3)
= T (using (S3)
Thus, if T |v = Tz|v, thenTs|v = Ti|v and thus3|v =
Tt"l}.

Thus, we showed that, in every case; i not a prefix ofu and
T1|v = Ta|v, thenTs|v = T |v.

. Finally, let us prove that all cas€g;(v) = T (v) or T(v)
T>(v). To do this, let us consider the following three possible
cases: (a) is a prefix ofu; (b) v is a prefix ofv and (c) neither
u is a prefix ofv norv is a prefix ofu.

@) Ifu = vw:
(A3) states thatls|v = Ta[u/(T:|u)]|v. Then using (S4),
we obtain thails(v) = T4 (v).

(b) If v = ww:
Let us start from (A3):

Tg‘v ETQ[U/(Tt"u)”U = Tg‘v ETt|U (S?))
= T3(v) =Ti(v) (E2)
(c) If neitheru is a prefix ofv norv is a prefix ofu:
Let us start from (A3):
Tg‘v ETQ[U/(Tt‘U)”U = Tg‘i] ET2|’U (53)
= T3(v) =Te(v) (E2)

Hence, for all cases, we showed that eitfigfv) = Ti(v) or
Tg(’U) = TQ(U). O

6.2 Computing the Modification Prefix

In the last section, we explained how to properly coalesce trans-
actions: it suffices to substitute the database’s current state by the
transaction state on the modification prefix of the transaction trie
and initial database state. However, computing the modification
prefix of two tries can be costly if we do not have additional infor-
mation. Fortunately, the modification sequence of the transaction
can be used to efficiently compute that modification prefix:

Lemma6.4. T} andT; are two tries andr; = [ul/ﬁ] . [un/ﬁl]
be a non-empty transaction such that =% T;. Thenn (T4, Ty),
the modification prefix ofy and Ty, is exactly the longest path
which is a common prefix of eveny, fori € {1...n}.

Proof. Let us prove Lemma 6.4 by induction on the sizerpf

(i) Let us show the first irlduction step. Let us fix = [ul/’fﬂ,
that is, 7: = Ti[ui/T1] and let us prove that the longest
common prefix ofu; is the modification prefix of; and T3,
thatisu; = 7 (11, T). According to Definition 6.1, we have to
show three implications:

e First, we have to prove that, for amye K*, if v is a strict
prefix of uq, thenTi(v) = Ti(v): if v is a strict prefix
of uy, that isu; = vw with w # ¢, then (S4) states that
Ti[u1/Th](v) = Ti(v), thatisTy(v) = T1(v);

e Second, we have to prove that, for anyc C*, if vis a
prefix of uq, thenTy|v £ Ti|v: if v is a prefix ofuq, that is
uy = vw, then (S2) states tha [u, /T1]|v # Ti|v, that is
Tt"l} 7_é T1|'U;



e Finally, we have to prove that, for anye £*, if Ti|v #
T;|v, then eithem, is a prefix ofv orv is a prefix ofu : if
Ti|v Z Ti|v, thatisTi|v Z Ti[u1/T1]|v, then (S3) states
that eitheru is a prefix ofv or v is a prefix ofu.

(ii) Let us then complete the induction process. Let usdfix=
o[un/Th], with o a non-empty transaction of size— 1 and let
us consider the tri@ such thatT; < T. Let us then have
m = w(T1,T). The induction hypothesis gives us thatis
also the longest common prefix of, . .., u,—1}. Hence, for
everyv € K*:

(a) If v is a strict prefix ofr, thenT: (v) = T'(v);

(b) If v is a prefix ofr thenTi|v = T'|v;

(c) If Th|v = T'|v then eithew is a prefix ofr or 7 is a prefix
of v.

Letu be the longest common prefix §fi1, . . ., u, } and let us
show that is also the modification prefix & andT[w,, /T5].
According to Definition 6.1, we have to show three implica-
tions:

e First, we have to prove that, for amye K*, if v is a strict
prefix of u, thenT (v) = Ti(v): if v is a strict prefix ofu,
we haveu = vw with w # ¢, and thus we have, = vw
with w # e. Then (S4) states th&t[u, /T,](v) = T'(v).
Using (a), we obtain thaf;(v) = T1(v), with v being the
longest common prefix ofu1, . .., un};

Second, we have to prove that, for anye *, if vis a
prefix of u, thenT’|v = Ti|v: if v is a prefix ofu, we have
u = vw, forw € K, thus we have:,, = vw. We can then
use (S2) to obtain thak[u, /T, ]|v £ Ti|v. Using (b), we
obtain thatl:|v = T4 |v, with v being the longest common
prefix of {u1,...,un};

Finally, we have to prove that, for any e K*, if T1|v #
Ti|v, then eitheru is a prefix ofv or v is a prefix ofu:
if Tilv # Ti|v then it is due either t@4|v # T'|v or to
T|v # Tt. In the first case, (c) states that eithes a prefix
of 7 or 7 is a prefix ofv; in the second one (S3) states that
eitherv is a prefix ofu,, or u, is a prefix ofv. Thus, ifp is
the longest common prefix af andu,,, that is the longest
common prefix of{ui, ..., u,}, then we have eitheris a
prefix of p or p is a prefix ofv;

Thus we showed that Lemma 6.4 is valid for any sizeof [

It is then straightforward to derive from Lemma 6.4 an incre-
mental algorithm to compute the modification prefix of tries asso-
ciated with a transaction: indeed, at each step of the sequence, i
suffices to take the longest common prefix between the path cur-
rently modified by the current step and the modification prefix al-
ready computed from the beginning of the transaction.

6.3 Algorithms

OXenstored is able to propergpalesceaunrelated transactions, ie.
transactions which modify disjoint subtrees of the current store.
To do this efficiently, it exploits the functional tree representa-
tion of the database. More precisely, consider a transaetica
[u1/T1]...[un/Ty). This transaction is executed incrementally so
we can also consider a sequence of timefor & € {0...n},
wheret, corresponds to a time just before the transaction starts, ie.
to the sub-sequenes = ¢ of o and each;. corresponds to a time
when only the sub-sequeneg = [u1/T1]...[ur/Tx] of o has
been executed. We can now define, for &ny {0...n}, the state

of a transaction at the timg as a structuréZ™™, T, %), where:

e 7" ¢ Tis a snapshot of the state of the database just before the
transaction started.

e T} < Tis a local trie attached to the transaction and where
the modification it contains are done, while letting the main
database state unchanged until the transaction is committed. Its

value is such thaf® 2= TF;

o % € ({T} U K*) is either T if no modifications yet been
executed (iek = 0) or u if u the modification prefix associated
with 7% and Ty (ie. =(T*,T})), that is, it is the longest such

that T} |z" is not a sub-trie of ™.

As already stated in Section 2.1, OXenstored gives a unique
identifier to each started transaction. This identifier is created when
a client sends to OXenstored a starting request for a new trans-
action; this identifier is associated internally with the structure
(T, T, T), whereT is the current state of the database. This iden-
tifier is also sent back to the client; the client can then put this
identifier in the header of packets it will send later in order to up-
date the state of this specific transaction. Eventually, it can also
notify OXenstored that it wants the transaction to commit, ie. to
push the changes introduced by the transaction into the current
state of the database.

In the following, we give the algorithms used by OXenstored to
update the structure associated with a transaction and to commit the
changes induced by a transaction into the current database state. We
assume here that (i) a client already started a transagtiowhose
associated structure (&, 77, 7*); (ii) the client has been sending
the requests to either update or commit a transaction; and (iii)
OXenstored has already decoded the packet header of that request
and the associated transaction structure is exd@fy 7}, 7).

Updating a Transaction  First of all, let us detail how to update
the structure associated with a transaction. Let us assume that
OXenstored decoded the packet content and found that the clients
want to substitute the tri&,, on pathux;i. OXenstored has to
compute the new transaction structyfg* !, T/ 751, We
have:

e Foranyk € {1...n}, T* is identical, as it is a snapshot of the
state just before the beginning of the transaction;

¢ Definition 5.1 states that a transaction is updated by applying to
its local state the substitutido1 /Tk+1];

e Lemma 6.4 shows that the modification prefix can be com-
puted online: indeed it is sufficient to compute incrementally
the longest prefix of* andwuy.y1.

Input: (T*, TF, 7*) and the substitutiofus 1 /Tk11]
Output: the new transaction structu¢@***, 7! 7F+1)
TkJrl P Tk

T+ — TFunsr /Tiosa;

k+

71— longest-common-prefix(m®, upi1);

return (THFT1 TR phtly

Algorithm 1: Updating a transaction.

These lead directly to Algorithm 1, that explains how to com-
pute (T*+HL TFFL 750 from (1%, TF, #*) and [ug1/Tk11],
foranyk € {1...(k — 1)}. Note that this algorithm uses the
functionlongest-common-prefix(u,v) which returns either the
longest common prefix ofi andv if w,v € K* or returnsw if
w="T (anduif v = T).



Committing a Transaction Second, let us detail how to commit  one write operationsrs,. Then, for deciding if the sub-trie of the
the structure associated with a transaction into the current statetransaction have been concurrently updated in the database’s cur-
of the database, in coalescing concurrent transactions when posrent state, we check that|z% = T*|z% andT|rk, = T*|x%

sible. Let us assume that OXenstored decoded a packet whosestands. If this is the case, we only update the sub-trie corresponding
header contains an identifier internally associated with the structure to writing operations, ie. we s&t «— T'[xf]/(TF|x*). This could

(T*, TF, ") and whose content contains a commit order. OXen- be helpful to reduce the conflict rate between concurrent transac-
stored has to compute the new state of the database, which shouldions which read and write in distinct sub-tries and dramatically
share, as much as possible, nodes from the current databasg state increase the efficiency of the coalescing in case a transaction only
and from the transaction local staf§; more precisely, we wantto  performs read operations.

ensure that this new database state is exactly the coalescing trie of

T andT}F, relative toT"* (see Definition 6.2). Basically, there are 6.4 Complexity

three cases: In order to find the complexities of the algorithms, we can first
e The first case is when no modifications are done concurrently derive the complexity of the trie operations from the axioms of

with the current transaction on the entire database. This casef19Uré 2 and the tree representation detailed in Section 4.2.

can be checked easily. Indeed, rule (S2) states that, in case a _. . . .

substitution is done on betwedh and 7%, then there exists . Flrs_t of all, usmg_the tree repr_esent@tlon of tries an(_j assum-
u € K* such thatT|u # T*. Finally, rule (R3) states that ing a mear cczjmplextl)ty _forr?cces_smg c_hlldre/n of a node it |sdthen
T # T*. When this case is detected, it is then safe to replace straightforward to obtain that, given trié§ " € T(K, V) an

. .~ a pathu € K*, the complexity of computing the restrictidfju
the database’s current state by the local state of the transactlon.and the substitutio[u/T"] is O(|u||K]) (thus, independent of

The second case is when no modifications are done concur-the size ofl” or of 7”). Moreover, the complexity of computing the
rently with the current transaction on the sub-trie corresponding physical equalityl” = 7" is in O(1).
to the scope of that transaction. Being able to detect this case

efficiently is the main improvement from CXenstored to OXen- Thus, the complexity of Algorithm 1 is i®(|ug41]|K]), where
stored. However, in our S?HIHQS, this is relatively easy. Indeed, |,*| is the size of the path which is modified and the complexity
Definition 6.1 states that" is the longest path such th&f | r is of Algorithm 2 is in O(|7*||K|), where |7*| is the size of the

not a sub-trie of ¥, that isT}* | is the biggest sub-trie modified  Jongest common prefix of any path which are modified. Thus,
by the current transaction. Thus, to detect if no modifications the complexity of these algorithms does not depend at all of the
are done concurrently with the current transaction, it suffices to size of the current database, which gives very stable performance.
check that the corresponding sub-trie in the database’s currentMoreover, in practice, the number of kefsand the path size are
state has not been modified, ie. tHatr = 7/ |x (as stated very rarely over 10, which can already lead to databasesith

by rules (S2) and (R3), as in the last bullet). When this case is entries, while keeping a good level of efficiency for modification
detected, Theorem 6.3 states it is safe to replace the sub-trie ofoperations.

the database’s current state by the corresponding sub-trie of the
transaction’s local state. 7

The last case relates to aborting the transaction if it is not

possible to commit it. In this case, the database’s current state
remains unchanged and the client is notified that it has to retry
the transaction.

Evaluation

In the previous sections, we explained how the OXenstored al-

gorithm for coalescing transactions works and we argued that,
although transactions can still be aborted, the rate of committed
transactions in a practice should be very high. In this section, we
These lead to Algorithm 2. validate this statement experimentally, by comparing the perfor-

mance of CXenstored and OXenstored. Not surprisingly, the results
we obtained show that OXenstored scales much better than CXen-
stored: indeed CXenstored exhibits a live-lock in a very common

situation (sequentially starting as many guests as possible), unlike
if T = T* then OXenstored.

/* if the database has not been updated */
return (77, commit);

Input: the current database stafeand (7%, T, 7*)
Output: the new database state and the transaction status

More precisely, the tests we ran are the following: first in Sec-
tion 7.1, we measured the performance under load of CXenstored

H kE — k| _k
else ifT|m" = T"|x" then and OXenstored in an isolated context, by creating random trans-
/ * if th: su}‘;‘tzle has not been updated */ actions and without interacting with theex hypervisor. Then, we
T" Tl /(Ty'|7")]; measured the performance of CXenstored and OXenstored when
return (7", commit); they are interacting with the &\ hypervisor, with and without
else load, in Section 7.2 and Section 7.3 respectively.
/* otherwise, abort */
return (7', abort); 7.1 Performance under Load
end Experiment Description We first wanted to test the transaction
Algorithm 2 : Committing a transaction. time latency mechanism, on a few workloads, with no interaction

with the XEN hypervisor. We wanted to simulate the behavior of
starting a guest, as described in Section 2. So, we created 128

Extension In the extended version of our implementation, where processes, each simulating the behavior of a guest and performing
we do not consider that reading operations update the state of thethe following transaction:

database, the algorithm remains more or less the same. However, .

instead of keeping a unique modification prefi for each trans- * They all read the value of the same path in the database; and

action, we keep two of them: one for read operatiorfs, and for e They all write in different parts of the database.



Furthermore, we repeated that transaction 500 times on each prowhich is around 300 transactions per second.

cess. Then, on each process, we measured the time taken by each

transaction to commit and we ordered the results. Furthermore, in the average case, Graph (b) shows that the
OXenstored performance are much stable for OXenstored than for
CXenstored, as the average delays for OXenstored are very low
(always under 1 second), unlike CXenstored which committed few
transactions over 10 seconds.

0.45

CXenstored

OXenstored -------

Finally, In the worst case, Graph (c) shows that CXenstored can
live-lock as some commit delays are over 12 minutes. On the other
hand, even in the worst case, OXenstored performance remains
very stable (around 1 second).

Duration (in seconds)

On graphs (a) and (b), there is a small glitch around the 17th
process. It is not totally clear what is the cause of that behavior.

° ® “ < " wooome W Experiment Conclusions The obtained results clearly indicate

(a) minimum delays that CXenstored cannot deal with more than 100 concurrent trans-
" ‘ ‘ ‘ ‘ ‘ actions, as opposed to OXenstored which does not show any sign
Sensiores — of performance issues. Furthermore, when access to the database

is the performance bottleneck, OXenstored is always quicker than
CXenstored, even in the case of few concurrent transactions. Fi-
nally, OXenstored has a very small variance compared to CXensto-
red, which means that we can expect that the system will behave in
a more predictable way.

Duration (in seconds)
®

7.2 Performance when interacting with theX eN hypervisor

Experiment Description  Subsequently, we designed a more real-
istic test than the one of Section 7.1, to compare the performance
of CXenstored and OXenstored to start real guests. For this exper-

° E “ ég,gcessNam§° 0 i o iment, we installed one guest running “Windows XP” and then we
(b) average delays repeated the following steps 100 times:
St — 1. clone 50 guests from the initial one (a clone is functionally
w00 1 equivalent to a fresh install, but it quicker);
T | 2. sequentially start all the cloned guests;

=1 3. sequentially shut-down all the cloned guests; and

4. uninstall (ie. destroy) all the cloned guests.

400

Duration (in seconds)

w00 | 1 At the same time, we measured the time taken for starting and
200 shutting-down each guest.
o 1 Experiment Results The results are shown in Figure 7. These fig-
0 ] ures show the integral of distribution probability for the time taken
’ T G to complete guest start and shutdown. The results for OXenstored
(c) maximum delays and CXenstored are quite similar: half the guest are started in less

than 4.5 seconds and are shut down in less than 2 seconds. Further-
more, 90% of the guests are started by OXenstored and CXenstored
in less than 7.5 seconds and are shut down in less than 2.9 seconds.

Figure 6. Comparison between CXenstored and OXenstored for
the time taken by 128 concurrent processes to to commit 500
transactions which read from the same path and write on different Experiment Conclusions The results we obtained show that there
ones. Processes are ordered following their completion time. is no major differences between OXenstored and Xenstored in this
case, that is CXenstored is clearly not a bottleneck under normal

Experiment Results Part of the results of this experiment are load.

shown in Figure 6. More precisely, these figures show for each ; 3 parformance under load when interacting with theX En

process the time taken by: hypervisor
(@) The fastest transaction to commit; Experiment Description  In this experiment, we wanted to start as
(b) The average time of the transactions to commit; and many guests as possible and compare the performance of CXensto-

red and OXenstored. Thus, we needed minimalist guests which do

not use many physical resources. Hence, we used a modified ver-
Graph (a) shows that transactions are always committed fastersion of “mini-OS”, a very small operating system distributed with

in OXenstored than in CXenstored. Moreover, in the best case, thethe XeN hypervisor sources, in order to start a lot of very small

commit rate of OXenstored is very stable at around 700 transac- guests performing long conflicting transactions concurrently. More

tions per second, as opposed to the commit rate of CXenstoredprecisely, we created 160 “mini-OS” guests, with 1 virtual disk and

(c) The time taken by longest transaction to commit.



1 minutes, it never commits the transaction which should configure

CXenstored

OXensiored ---——— e ’ and start the 70th guest. On the other hand, OXenstored keeps
starting the guests at a constant rate every 2 seconds and it started
er 1 all the 160 guest in less than 6 minutes.
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Figure 8. Comparison of the time taken by CXenstored and OXen-
) stored to start as many mini-OS guests as possible, when these
guests perform long transactions in a loop.
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Experiment Conclusions Is is quite clear that OXenstored is not

1 at all influenced by the long transactions, as opposed to CXenstored
i which begins to live-lock when more than 40 guests are started.
Hence, the performance of OXenstored is more stable and it scales
much better than CXenstored.
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(b) Shut?iné] down a guest. 8. Related Work

Transactional databases have been widely studied in the last few
decades (Hrder and Reuter 1983; Bernstein et al. 1987). They
Figure 7. Integral of the distribution probability of the time taken provide to the user a very simple way of encapsulating a group of
by CXenstored and OXenstored to start a real guest. actions, called a transaction, with the following properties: If one
part of the transaction fails, the entire transaction fails (atomicity);
at every moment, the database remains in a consistent state: only
valid data are written in the database (consistency); other opera-

1 virtual network each, which all do the following when they are

started: tions cannot access or see the data of an intermediate state during
1. start a transaction: a transaction (isolation); once the user has been notified that one of
) ) ) its transactions has succeeded, the transaction will persist and not

2. write a value in/local/domain/X/device/foo (Wherex is be undone, even in case of a failure (durability). These properties
the current guest ID) using the opened transaction; make the concurrent programming of such systems very easy, as

3. sleep 1 second; the user does not have to worry anymore about using locks to en-

4. write a value in/local/domain/X/device/bar (WhereX is sure data consistency.

the current guest ID) using the opened transactions; The most common way to ensure atomicity in transactional

5. close the opened transaction; databases is a mechanism caltmmmpensatior{Gray and Reuter

6. sleep 1 second; and 1992). In case of failure, compensation consists of executing the
compensating actions, corresponding to the executed actions of

7. go back to step 1. the failed process, in the reverse order of their execution. This ap-

¢ bProach has recently gained renewed popularity in the context of
statistics inside each guest (as the current memory usage for guest eneral-purpose programming known as “Software Transactional
9 ( Y g g emory” (Shavit and Touitou 1995; Harris and Fraser 2003; En-

which are not modified to run on top of theEX hypervisor, as N~ . =
“Windows” guests). We then sequentially started as many guests aSnals 2005; Riegel et al. 2006), where the purpose is to minimize

we can on one host and we measured the cumulative time taken tol€ US€ Of locks (by the use of lock-free data structures, for ex-
start each of the guests. ar_nple). The same compensation mechanisms have a_Iso been ap-
plied successfully to build efficient and robust transactional web-
Experiment Results Figure 8 shows the cumulative time taken to  services (Biswas 2004; Biswas et al. 2008). Due to the nature of the
start as many guests as possible in less than 20 minutes. CXenstoredompensation mechanism (ie. keeping a list of the actions executed
begins to starts 30 guests at a constant rate of 2 seconds per guesty each started transaction), there is a straightforward but very

started, but it starts to live-lock around 40 guests. Finally, after 20 costly way to merge transactions: when a transaction is committed,

These transactions simulate the way some monitors repor



only the started transactions that read values written by the com- performs it. As a direct consequence of these results, OXenstored
mitted transactions are aborted. Note that this may lead to further will replace CXenstored in future releases cf XSERVER.

abortions of other transactions and so on, an effect caliedading

aborts This effect can lead to very hard-to-predict performance.  Acknowledgements
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