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Abstract: Diagnosis of a system consists inruns. Then, these potential explanations can be
providing explanations to a supervisor from aexhaustively checked to find the actual fault.
partial observation of the system and a model Within this paper, we will address history
of possible executions. This paper proposes diagnosis of distributed systems. The major ob-
partial order diagnosis algorithm that recovergective of this work is to exploit concurrency in
sets of scenarios which correspond to a givethe system, and avoid combinatorial explosion
observation. The main difficulty is that someusing partial order models. It is well-known that
actions are unobservable but may still inducénterleaved models can be of size exponentially
some causal ordering among observed eventgreater than concurrent model. Hence, as long as
We first give an offline centralized diagnosisan analysis of a system does not need to study
algorithm, then we discuss a distributed versionall global states, true concurrency models seem
well adapted to provide efficient solutions. In this
paper, we propose to model the diagnosed system
with High-level Message Sequence Charts (or

The role of diagnosis is to provide information HMSCs for short), a scenario formalism [4]. The
to supervisors of a system when faults occurobservation of the system(i.e. the information
The objectives are manifold: either detect thastored in a log file after an execution) is provided
the system has reached a set of critical states thas a partial order, and the explanation is given
should be avoided, or try to reconstruct an execuas a set of partial order representations of all
tion that has led to a fault. However, informationpossible executions that may have generated the
retrieval is most of the time performed from observation according to the model.
partial observations: distributed systems are now The authors of [1] already address history
so complex that monitoring every event of andiagnosis with partial order model (safe Petri net-
execution is not realistic. In telecommunications). In this approach, diagnosis is an incremental
systems, for example, the size of logs recordedonstruction of an unfolding of the net model.
at runtime grows fast, and can rapidly exceed he incremental aspect of this approach is clearly
the storage capacity, or the computing powewell adapted for online diagnosis, but does not
needed to analyze them. Furthermore, the timallow for a compact representation of explana-
penalty imposed by the observation to the systertions. When unobservable events can be iterated
also advocates for a partial observation. Hence, @an unbounded number of times, this incremental
choice of a subset of observable events is clearlgpproach becomes impossible (unfolding may
a part of the design of a complex system. never stop).

For the first kind of diagnosis, that can be The algorithm detailed in this paper starts from
defined adault diagnosis the main question is an observationD given as a partial order, an
whether for given sets of faults and observabléAMSC modelH of the possible behaviors of the
events the system is diagnosable, i.e. the occusystem, and the knowledge of the type of events
rence of a fault can eventually be detected aftethat have been recorded . We also assume
a finite number of observations [8]. Diagnosisthat the observation mechanisms that have been
is then performed by an observer that monitorsmplemented within the distributed system are
observable actions and raises an alarm whepssless. That is, if an observed event does not
needed. appear in the observation, then we have the

For the second kind of diagnosis, that we willinformation that it did not occur.
call history diagnosishereafter, the question is We do not impose restrictions on the obser-
to build a set of plausible explanations of anvation architecture: observed events occurrence
execution from a model of a system and ammay be collected in a centralized way, or sepa-
incomplete observation of the faulty executionrately by distributed observers. However, we will
[1]. The main idea behind this approach is toconsider that for a given process, all observed
exploit causality in a system to restrict the seevents are totally ordered. Furthermore, the pro-
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cesses may be equipped to record the respectiiiestances An instance usually represent a pro-
order between events located on different proeess, or a group of processes of a distributed
cesses (this ordering can be deduced for exampsgstem. These instances exchange messages (in
from messages numbering, or from a vectoasynchronous mode), and can also perform atom-
clock). Hence the observatio® may specify ic actions. Formally, a bMSC can be considered
some particular ordering between events that ias a pomset which events are labeled by action
not only induced by emissions and receptionsilames and by the instance performing the event:
of messages. This additional information can be Definition 1: A Basic Message Sequence
used to refine the set of explanations provide€hart is a tuple B = (E,<,A,I,a,¢,m),
by the model. Indeed, if an evert happens where E = Es U Er U E,4 is a set of events
before an event’ in the observation, then in that can be partitioned into a set of message
any possible explanation provided by the modelemissionsEg, a set of message receptiof,
e must be causally related td. and a set of atomic actionf,, <C E x FE
The main result of the paper is that we can stilis a partial order relation (reflexive, transitive,
finitely represent the set of runs of a distributedantisymmetric) A is an alphabet of action names,
system that explains a particular observation I is a set of instancesy associates an action
The explanation produced is a generator of alhame to each event angl associates a locality
executions of our model for which the projectionto each eventm : Es — Eg is a one to
on observed events is compatible with More  one function that pairs message emissions and
precisely, we show that the set of explanationseceptions. Furthermore, the order on instances
can be described by another HMSC. This givess a total order denoted by;, that isVe, f €
the basis of a centralized diagnosis algorithm. E . ¢(e) = ¢(f) =i = e <; for f <; e
For the distributed algorithm, we use a prop-The causal ordering among events comes from
erty showing that a global explanation can behe sequential order on processes and from mes-
reconstructed from local diagnosis performed fosages. Hence, we have= (m U J;c; <i)*,
each pair of instances. Thus, each instance comvhere (.)* denotes the transitive closure of a
putes separately the set of executions that camlation. We will also suppose that there is no
explain what it has observed. The only (small)self-overtaking among messages of the same type
information that needs to be exchanged betweefweak FIFO property), i.e.: for alt <; ¢', f' <;
processes is the events that were observed so fgrwith m(e) = f andm(e’) = f’, we have that
At the end of the execution, a last step mighta(e) # af(e’).
be needed to combine together the distributed Figure 2 shows three examples of bMSCs
explanations. Notice that such an algorithm mayalled M1, A2 and M 3. In bMSC M3, three
also be used to track a fault on the fly, wherprocesseq P1, P2, P3} exchange messages
a behavior that is not part of the model of theand n. Instance are simbolized by a vertical
system is considered as faulty. line enclosed between a white and a black
This paper is organized as follows. Section llrectangle. Messages are symbolized by arrows
introduces the scenario language used, and seftem the emitting instance to the receiving one.
tion Il introduces the formal definition of an Atomic actions are symbolized by a rectangle
observation. Section IV defines the main algoenclosing the name of the action. For a more
rithms for diagnosis and gives complexity resultsdetiled description of all MSC features, we refer
and shows how to retrieve explanations in dnterested readers to [4]. In the following, we
distributed framework. Section V concludes thiswill consider that executions of a distributed
work. Due to lack of space, proffs are omitted,system are provided as bMSCs. Note however
but can be found in an extended version from th¢hat an incomplete observation of a distributed
author’s webpage. system is not always a bMSC: we can for ex-
ample observe a message emission but forget
Il. SCENARIOS the reception. An observation of a system is
Scenarios are a popular formalism to definghen better defined aslabeled partial orderi.e.
use cases of distributed systems. Several lam tuple O = (Ep, <o, 40, lo, a0, ¢o) where
guages have been proposed [4], [7], but they ar&p, Ao, Io, a0, po have the same meaning as
all based on similar representations of distributedor bMSCs, and is given by the total ordering
executions with compositions of partial orders.on each process, plus some additional order-
We use Message Sequence Charts, a scenaig on different instances (deduced for example
language standardized by ITU [4]. MSCs arefrom packet numbers in a protocol). Actually,
defined by two levels. At the lowest level, Basican observation is the projection of a bMSC.
Message Sequence Charts define simple intefhe projection of a bMSC B on a subset of
actions among components of a system calleifs events E’ is the restriction of B to FE’,



i.e. the labeled partial orderg (B) = (E',< order automata, that should be considered as
NE", A|lp:,1,a|p,d|p,m|). Note that the execution generators. More formally, an HMSC
projection of a bMSC is not always a bMSC, can be described as follows:
as the message mapping is not always preserved.Definition 3: A High-level Message Sequence
We will often consider projection of a bMSC on a Charts (or HMSC for short) is a tupled =
set of instanced C I, and denote this projection (N, —s, M, ng, F'), whereN is a set of nodes,
m7(B). More formally, 7;(B) = m4-1(5)(B). —C N x M x N is a transition relationM is
We will also use the projection of a bMSC onan alphabet of bMSCsy is an initial node, and
a set of event types, denoted byrs(B) = Fis a set of accepting nodes. A HMSC defines a
To-1(x)(B). For more material on scenario pro-set of successful patt8; which goes from the
jections, interested readers are referred to [3]. initial node to some final node. We associate each

From now on, we will consider that all bMSCs successful path = ng M, ny... M ng, with
are defined on similar set of instanckseven if a bMSCB,, which is the sequential composition
these instances are not active in the bMSC. Wef labels along path, i.e. B, = Mj o --- o Mj,.
will also denote byB. the empty scenario. bM-  In a HMSC, nodes define potential global
SCs alone do not have enough expressive powstates of the system, that are used to glue bMSCs.
to describe complex behaviors. They can onlyNote however that these nodes do not impose
define finite and very linear executions. Howeverany synchronization among processes, and that
the bMSC formalism has been extended witha system may Figure 2 contains an example of
several operators to allow iterations, alternativesa HMSC H. The initial noden, is connected
and sequential composition. Sequential compao a downward triangle, and the only final node
sition allows to glue two bMSCs along their n; is depicted by an upward triangle. The tran-
common instance axes to build larger executionssitions of H are (ng, M1,no), (no, M2,n;) and
It is formally defined as follows: (ng, M3, ng).

Definition 2: Let By, B, be two bMSCs. The

sequential compositionf B; and B, is denoted [ ,,sc
Bj o Bs, and is the bMSCB; o By = (E; 4 Y
By, <102, AU Az, I1 Uls, 102, $102,m1 Wmy), ;
where <i,2= (Sl U <y U{(€1,€2) € FE; x J /ﬁ
— * 1 1 M<Tall bMSC M1 bMSC M2
E2_| o(e1) = ¢(e2)})*, with W denoting disjoint p1 - oasews i,
union.
bMSC M1 bMSC M1 o M2
P1 P2 P1 P2 P3
m
m n
Observation O
bMSC M2 p1
P2 P3
n

) ) . Fig. 2. A HMSC example and an observation
Fig. 1. Sequential composition of bMSCs g P

. . . I1l. OBSERVATION
Note that sequential composition does not im-

pose synchronization among instances: events of Let us now define the essential notions that
M, and M, can still be concurrent. Figure 1 will be used to find explanations of an obser-
shows an example of sequential compositiowvation. An observatiorO performed during an
of two bMSCs. In the compositiod/1 o M2, execution of a system should be an abstraction
action ¢ and the emission of message, for of an existing execution (i.e. an abstraction of a
example, are still concurrent events. The MSMMSC). We will suppose that on each instance
formalism proposes several other operators suatf our distributed system, a subset of events is
as alternative and iteration. These compositiomonitored: every time a monitored eveatis
mechanisms are best described by a formalismxecuted, a message is sent by a local observer to
called High-level Message Sequence Charts (dhe supervision mechanisms. In the following, we
HMSCs for short). HMSCs are a kind of partial will only suppose that observations are lossless



(all events that are monitored are effectively rew’s b are concurrent in the observation, but the
ported when they occur), and faithful (observerorder O, can clearly be injected iB;, hence
never send events that have not occurred t®; — Bj. For the pairO,,B, there is also an
the supervising architecture, and do not creatmjective mapping that map®, to a prefix of
false causalities). The set of types of monitoredhe projection ofB, onto ¥,;,. For the pairOy,
events isY,s. The observations can contain B4, a andb are unordered in the explanati@y
additional ordering information (built from local and hence the observatiéhl can not be injected
observations and additional information such as Bs. For the pairO4, By, there is no injective
packet numbers, vectorial clocks,...), and are thusmapping satisfying the three conditions. Indeed,
considered as labeled partial orders. We will alsthe unmatched occurrence ipShould have been
consider that for a given instance, the observasbserved. Hencd3, is not an explanation ab,.
tion is a sequence, that is, the communication This matching definition is close to the defi-
between local observers and the supervision anition of matching proposed by [6], [5]. It is easy
chitecture is FIFO. Note also that events argo see that the functiofi is unique ifO matches
not observed on all instances, hence we definB: f : Eo — Ep is the function that sends
a setl,,s C I on which events are monitored. the k-th event of E5 on instance onto thek-
Let O = (Eo,<0,40,Ioao, ¢o) be a partial th event ofry_,. (B) on instance for all k£ and
order. We say that a set of eveRtC Ep is a i € I,;,. Notice thatO needs not contain event
prefix of O if for all a <o b with b € E, then of every type inX,,s, nor an event on every
a € E. As already mentionned, an executiBris  instance ofI,,,. However, the fact that there
an explanation for on observatiénonly if they are no event of some type il rules out some
are compatible w.r.t. the sets of events observegossible explanations. Furthermore, an observ-
and their causal ordering. This compatibility isable event located on some instancd gf. in B
defined as an embedding relation frathto B cannot precede any event ffEo ), as otherwise
as follows: f(Eo) would not be a prefix ofrs; ,_ (B). These
Definition 4: Let O = (Eo,<o properties can be used to extract explanations of
, Zobsy Iobs, 20, 00) be a labeled partial an observation out of a model of the system.
order. LetB = (Ep,<p,YXp,ap,dp,mp) be Definition 5: Let O be a partial order andl
a bMSC. We will say thalD matchesB with  be an HMSC. The set of explanations provided
respect to the observation alphab®f,; and by H for an observatior0 is the set of paths
write O — B whenever there exists an injective’? C Py such thatvp € P, O matchesB, with

function f : Ey — Ep such that:
e f(Ep) is a prefix ofry,, . (B),
» ao(e) = agp(f(e)),

e e<e = f(e) <p f(¢).

respect to the alphabét,;.

Notice that the set of explanations provided
by H is not always finite nor its linearization
language is regular, but we will prove that it can

be described by an HMSC in Theorem 1. As
already mentioned, observations may be collect-
ed either in a centralized or a distributed way,
and observed events can be sent to supervising
mechanisms via asynchronous communications.
Hence, the model of our system can describe runs
Fig. 3. Two matching examples w.£b, b} and two counter which are longer than the observations coIIectgd
examples so far. Note however that thanks to the prefix
condition, our framework does not impose ob-
More intuitively, the first requirement of this servations to be complete.
definition means that all events of an explanation
have not yet been collected by the observers
when the diagnosis is performed, but that when
an eventin an execution is observed, all its prede- The main objective of our diagnosis approach
cessors (according to the observation) have alde to extract from an HMSC a generator for the
been observed. Let us illustrate our definition orset of explanation®o m of an observatiorO.
the examples of Figure?, whereX,;; = {a,b}, This generator can be defined as a quotient HM-
01,05,03,04 are observationsB3,, By, B3, By  SC of H. This quotient is computed as a product
are bMSCs, and the matching relatighthat between the HMSC and the observation, with
sends an observation onto an execution is resynchronization on monitored events. Hence, we
resented by dotted arrows. Let us considgr will build a new automaton whose nodes are
and B;: there is an injective mapping from product of a node of the original HMSC with
the observation to a prefix of the explanationthe subset of events @b observed so far, that
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will be called theprogressof the observation. Intuitively, Ao, g is the generator of all expla-
For instance, a path leading to the product stateations of observatio® provided by the HMSC
(v, Eo) should generate an execution that emmodel H. The restriction ofdo ; to coaccessi-
bedsO. ble states of” is thediagnosisprovided for ob-
The main difficulty is to know the influence of servationO from the HMSC ModelH. It is obvi-
unobservable events in a run of an HMSC on theus from the construction @f that any accepting
respective order of observable events. As alreadyathp of Ao x generates a bMS®B, such that
mentioned, valid explanations may contain an in® — B,. Note however that these path are
finite number of unobserved events. However, waot the minimal path embeddin@. To consider
can always keep an abstract and bounded reprenly minimal path, one should consider only the
sentation of these unbounded orders. This will beelationd’ = 6 N {((n, E,g), M, (n', E', M")) |
modeled by a partial functiop : I — 2° that E # Ep}, and the set of accepting nod&% =
associates to each instancec I the observed {(n,Eo,g)}. Consider the HMSCH and the
events of O preceding the last event (observedobservatiorO of Figure 2. The HMSC describes
or not) on instancé in the HMSC. Notice that the behavior of three processeg, P2, P3. Let
this function is not redundant with the order@f us suppose that we have equipped a distributed
since the observation and the run of the HMSGystem to observe any occurrence of actians
can define different orders on observed eventand b and that We obtaln the observatian.
Let us build the following HMSC associated to Clearly, ng My no Mz ny is not an explanation
an observatio) and a HMSCH on an alphabet of O for the observation alphab&,,s = {a, b},
Tops: Ao, = (Q,6, M, qo, F'), whered is a asa and b are not causally related id/1 o
new transition relation)) C N x PrefiXO) x F,  M2. The automatondp m computed fromO

and F is the set of functions fronf to 2. and H with this observation alphabet is given
e qo = (no,Be,9p), in Figure 4. The transitions with a dark cross
« F'={(n,Eo,q)|n € F}, symbolize transitions of the original HMSC that

. cannot be fired in the diagnosis automaton. For
« (. E,9), M, (nl’El’gl)> €owith E# 0 ovample, from the initial state, the transition
[ labeled by M2 cannot be used, as any path
_n M n', starting with this transition would not allow a
- E'=Ewns,,, (M) is a prefix ofO, matching fromO to B,. One can easily verify
- g = gp) U {g(d(e)) | e <p thatO matches any bMSC composition of the
e, ") = ptU{e € mg,, (M) | formM3*oM1loM3oM3oM3*oM2. Note
e<a e, o(e') =p}, that if we choose as observation alphabgf; =
— For all a,b € E’ with a <, b, either {a,b,!m}, the observatio) has no explanation
a,b€ E,ora<p b, or3dc <y bwith in H.

a € g(¢(c)).
. <(n,Eo,g),M, (n’,Eo,g)) € § iff n—Ln/.

Note that g(p) is updated only when
the observation is incomplete. It is updat-

ed to memorize the observable events in the [ w2 ] P (@)
causal past of the last event (observed or V M2
not) executed by each instance. Similarly, we
make sure during construction of a transition ‘ <n0, E,Plﬁ{a@‘

P2—= {a}
((n,E,g),M, (n’,E’,gl)> € ¢ that any order " $<\M2
a <o b is preserved inE': eithera,b precede M3

: : 0, ’Pl—> {a}
all events of M and their ordering was already d <n S EZD
checked, or they are ordered i, or a is in M

andb precedes an event 8f that happens before
a. We denote byPo g C Py the set of paths of
H that are projections on the first component of < E P1— {a)

successful paths oflp 7. P2— {a}

Theorem 1:Let Ao i be the HMSC comput- P {ab}
ed fromO and H, andp € Pyg. ThenO —
B, iff p € Po,n. Moreover,Ap y is of size
O(|H| x O] 11ITon]).

Fig. 4. A diagnosis automaton



Theorem 2:Knowing whetherH contains an plexity of O(]O| x |H|). Notice thatA; ; has
explanation for an observati@gnis NP-complete. to be computed only for thosé # j € I,
If the set of processes is fixed, the problem is irthat have additional causalities implied by the
NLOGSPACE. observation (which can be determined online).
Centralized diagnosis amounts to building df the only ordering between events located on
diagnosis automaton of exponential size in thé and j are derived from messages @, then
number of processes. Furthermore, in some cast; ; = A; ® A;.
es, this state space must be entirely explored to An additional possibility to exploit property
discover that no explanation exists (see theorerh is to perform an online distributed diagnosis,
2). Performing local diagnosis is a solution tofollowing the work of [2] for example. The
reduce this complexity: each instance computestrategy is then to distribute the computation of
locally a partial diagnosis, that is then refined byA; ; for i # j € I,;s. Noticing thatP; ; = P; ;,
the calculi of other instances. we have to distributel,ps.(|Iops| — 1)/2 local
Leti,j7 € I be a pair of instances and = diagnosis, that is each instance observing some
(0,<0, 40,10, b0, ap) be an observation. The monitored events can computél,,s| — 1)/2
local diagnosis for instancés;j is the automaton diagnosis HMSCs on the fly, based on the ex-
Aij = Ar, ;(0),m With the observation alpha- ecution observed so far that is broadcasted by
bet¥,5s N ¢~ 1({i,7}). Since an explanation of every instance.
an observation for some alphab®tis still an V. CONCLUSION
explanation for any alphabét’ C ¥, we have  This paper has proposed a scenario based
that Po,m C Pa,;. Hence, a finer diagnosis giagnosis. The main objective of the approach
can be obtained from successive compositions 6§ to perform all calculi on partial order models,
local diagnosis. This compositian is simply an  3nd avoid the state space explosion due to an
intersection, defined as a synchronous product gfterleaved search in the execution model. We
two diagnosis automata. That is, for two HMSCspaye shown that the scenario-based diagnosis can
A and A, ((v,w), M, (v',w')) is a transition pe easily distributed.
of the productd @ A" iff (v,M,v") € 6 and  The next step is to check how this approach
(w, M,w') € &'. The next proposition shows that can pe performed online. Another extension of
when a run belongs to event; ; then it is an  this work would be to consider diagnosis from
explanation ofO: more powerful scenario models. Indeed, MSCs
Proposition 1: For every HMSCH and ob- 4o not allow for the design of behaviors such
servationO, we haveAo i = it o, Aij- as sliding windows. This can be considered as a
We know that the size ofA;; is in |mitation, as these behaviors are quite frequent
O(|OPV1|H]). An immediate idea stemming in actual protocols. However, extending the sce-
from this proposition is to split diagnosido,n  nario model inconsiderately could rapidly make
in several problem$A; ; }ijer,,. Of size 2,and  giagnosis an undecidable problem (diagnosis is

then compute the product of these local diagnonot decidable for communicating automata for
sis. The objective is to produce a faster resulgyxample).

when the final diagnosis is small or empty, and to REFERENCES
avoid considering lots of intermediate states that

il lead final A solution i build 1] A. Benveniste, E. Fabre, C. Jard, and S. Haar. Diagnosis
will'not lead to a final state. A solution is to bui of asynchronous discrete event systems, a net unfolding

an automaton for each couple of instances and approach. IEEE Transactions on Automatic Contyol
to prune them on the fly to keep only successfuz/] 48(5):714-727, May 2003.

. h bed th b . If 2] E. Fromentin, C. Jard, G.V. Jourdand, and M. Raynal.
runs (i.e. runs that embed the observation). If an On-the-fly analysis of distributed computation#nfor-

of the local diagnosis becomes empty during the mation Processing Letter§4:267-274, 1995.

computation, then we know that no explanation3] B- Genest, L. Helouét, and A. Muscholl. "High-level
exists in the HMSC model for this observation message sequence charts and projectionBrdoeedings
XISLS | ' vation.  5f CONCUR’20032003.

Otherwise, once the local computations have4] ITU-TS. ITU-TS Recommendation Z.120: Message Se-
been completed, we need to compute the produt;sﬁ 2“%3;‘;37‘”%2%?;% fizgfgbgr 1&3256\96 e
of the local diagnosis to obtain the final set of ™ g ence Charts. IFoSSaCS'99LNCS 1578, pages 273
runs (that is likely to be small). 287, 1999.

Another solution is to consider first the paths[®l A- Muscholl, D. Peled, and Z. Su. Deciding properties
h id hi f 0) ai by th for message sequence charts. HOSSACS’'98 pages
that provide a matching for;(0) given by the 226-242. Springer-Verlag, 1998.

automatonA; = A, o),g for somei € I,ps.  [7] OMG. Uml superstructure specification, v2.0. OMG
Pruning this automaton may be less effective thap Document number formal/05-07-04, 2005.

. . uti b deri ] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamo-
In previous 5(? Ut'_on_’ ecause ordering Cann(_) hideen, and D.C Teneketzis. Failure diagnosis using
be used to discriminate some paths, but this discrete-event models/EEE Transactions on Control

initial step is performed with an initial com- ~ Systems Technologg(2):105-124, 1996.



